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504 B. H. NEUMANN ON THE

INTRODUCTION

Since 1944, when the important book Teoriya Grupp by Kuro§ appeared, the theory of
groups has made great advances, many of them in the directions indicated by Kuro$ in the
concluding section of his book. When a German translation of the book was being prepared,
it was therefore decided to add as an appendix an exposition of some of the recent advances.
It fell to me to write this appendix, and the present essay has grown out of it.

In fact the greater part of this essay is a translation of the ‘Anhang’ which is shortly to
appear with Kurosch’s Gruppentheorie (translated by W. Hahn: Akademieverlag Berlin;
a Hungarian translation by A. Gascalyi, also with the appendix, is to be published by
Akadémiai Kiad6 Budapest). I have, however, used this opportunity to revise and supple-
ment it in a number of places, to embody some even more recent results and to draw attention
to others; some of these are now in course of publication.

Free products of groups with amalgamated subgroups, which form the central theme of
this exposition, are barely mentioned in the book by Kuro§ (1944); Magnus (1931, 1932)
had early recognized their value, but they had not yet fully established their usefulness.
However, they have recently shown themselves to be a powerful and versatile tool, as well
as interesting in their own right. They are here introduced, studied and applied to a number
of problems in abstract group theory. Much of their structure theory and many of their
most recent applications will, however, not be found here; a number of papers not referred
to in the text are listed at the end. |

CHAPTER I. THE GENERALIZED FREE PRODUCT; NORMAL FORMS
1. Definition and fundamental properties

In this chapter we start from a given group and explain what it means that it is the
generalized free product of certain subgroups; and we examine the most important special case
in some detail.

Let P be a group and € a set of generators of P. Let € be the union of subsets €,, not
necessarily disjoint, where « ranges over an index set A:

@ = UaeAga'

Every set €, generates a subgroup G, = {€,} of P, and Pis evidently generated by the groups
G,. Now let R, denote a system of defining relations of G,; thus R, consists of relations

Tap(ooesys ) =1 (peP,y),
where the generators which enter these relations belong to €,. If now all these relations
together
& ’ m = UaeAmw

form a set of defining relations of P, then we call P the generalized free product (Hanna Neu-
mann 1948) of the subgroups G,.

Different sets €,, €, of generators have not been assumed disjoint; hence different groups
G,, G4 can have a non-trivial intersection

GynGy=H,, (=H,,).
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FREE PRODUCTS OF GROUPS WITH AMALGAMATIONS 505

If all these intersections are trivial, H, ;= {1} (o, fe A,a=p), then P is called simply the
Jree product, or, to emphasize the distinction, the ordinary free product, of the G,. An example of
a generalized free product which is not an ordinary free product will be found at the end of
this chapter.

Our definition does not depend on the ‘factors’ G, only, but also on their systems €, of
generators and R, of relations. To show that the generators and relations do not enter the

definition essentially, we first show that Pis in a certain sense (cf. Bates 1947) the fieest group
of its kind.

THEOREM. Let P be the generalized free product of the subgroups G,,ae A, and let Q be a group
which contains to every G, a homomorphic copyt

G, =G4,
in such a way that every two homomorphisms ¢, ¢ 5 agree where both are defined; thus if
he H; =G, n Gy,
then we require hd,, = hp.

Then all the $,, can be extended simultaneously to a homomorphism ¢ of P on to the subgroup of @
generated by the G ; that is to say, there is a homomorphic mapping of P into Q which on every G,
agrees with ¢, (1-1)

Proof. We first define ¢ for the generators in € by putting, for every ee €,
ep = eg,.

This defines e¢ uniquely ; because if ¢ belongs to more than one €_,then all the corresponding
¢, assign it the same map in . Now any relation

P(eerypy cveylpyonn) =1

between generators in € follows from certain defining relations of the G, ; the same relations
hold also between the corresponding generators of the G, as the mappings ¢, are homo-
morphisms, and the relation

P(evsly@y oy r@yen) =1

between them then follows. Hence the mapping ¢ generates a homomorphism of P on to
that subgroup of @ which is generated by €¢, that is, by the G ; and as ¢ maps the system
&, of generators of G, exactly as ¢, does, the homomorphisms ¢ and ¢, agree on G,. This
completes the proof of the theorem.

It follows from this theorem that Pis uniquely determined (apart from isomorphism) by the
subgroups G, and their intersections /1, ;. Forlet P’ be another group which s the generalized
free product of subgroups G,, (2€ A), and let equally indexed groups G, and G, be isomorphic;
let there be given to each « an isomorphic mapping ¢, of G, on to G, which maps the inter-
sections H,; on to the corresponding intersections H,; = G, ~ Gy. Specifically, if he H,,,

a,

we assume ;l¢“ — }l¢ﬁ)

+ Mappings (such as homomorphisms, endomorphisms, permutations, etc.) are written as right-hand
operators.
64-2
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506 B. H. NEUMANN ON THE

and if &’ e H, 5, we assume conversely
Kt =hésl.

Then there is a homomorphism ¢ of P into P’ which in every G, coincides with ¢ ,; and there
is also a homomorphism  of P’ into P which in every G/, coincides with ¢!. The product
¢y is thus an endomorphism of P which maps each G, according to ¢,¢,!, that is, simply
identically on toitself. As the G, together generate P, ¢y must be the identical automorphism
of P. Similarly, ¢4 is the identical automorphism of P’. But ¢ and ¥ must then be mutually
inverse isomorphisms of P on to P’ and back, and P and P’ are seen to be isomorphic. This
shows that the generalized free product does not depend on the systems of generators and
relations which enter the definition but only on the systems of groups G, and intersections
H,;, that is, the so-called amalgam? of the G,.

Every group P has a—rather trivial—representation as a generalized free product. We
choose a system of subgroups G, of P such that every finite set of elements of P is contained
in (atleast) one of the G, (thus, for example, the G, can be all the finitely generated subgroups
of P). If €, is a set of generators of G, then € = U ., €, is evidently a set of generators of P.
Any relation of P involves a finite number of elements only: these lie in a G, and in this the
relation must be satisfied ; thus it follows from the defining relations of G,, and we see that
all defining relations of all the G, together form a set of defining relations of P. Thus P is
the generalized free product of the G,,. If P is finitely generated, then it occurs itself among
these G, ; but even if it does not (and so cannot be finitely generated), it coincides with the
amalgam, that is, the set-theoretical union of the subgroups G,. We shall call P the proper
generalized free product of subgroups G, if it is the generalized free product but does not
coincide with the amalgam of the G,.

2. One amalgamated subgroup; the normal form

In order to obtain useful results one has to impose some rather restrictive conditions
upon the groups; this we now proceed to do.

A central place in the theory is occupied by the special case first studied by Schreier (1927).
Here all the intersections H,; coincide to form a single group H, so that

G,n Gy =H,

when «, fe A, a=f. This case arises, for example, whenever A consists of two indices only,
in other words, when the product has only two factors. We call P the ‘(generalized}) free
product of the G, with the amalgamated subgroup H’. In this, as in the ordinary free
product (with only trivial amalgamations), one can represent the elements in a certain
normal form. The remainder of this chapter is chiefly concerned with this normal form and
its principal properties.

We choose in every group G, a system S, of left coset representatives modulo H; thus
every element ge G, is uniquely represented in the form

g=sh (seS, heH).

T Baer (1949); cf. also chapter 1, §9.
I We use ‘free product with amalgamated subgroups’ and ‘generalized free product’ synonymously, the
amalgamations being understood.
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FREE PRODUCTS OF GROUPS WITH AMALGAMATIONS 507

For the sake of simplicity we take the unit element as the representative of H itself, so that
1e S, for every a. Now we distinguish certain words in elements of the G, ; specifically we call

W=8Sy...5,
a normal word if it satisfies the following three conditions:
(1) Every component s; (1 <i<n) is a representative =1 belonging to one of the §,,.
(2) Successive components s; belong to different systems of representatives; in other
words, if 1 <i<n, 5;€5,, 5;,, €5, then a=p.
(3) The last component belongs to the common subgroup,
he H.

We call n the length of the normal word. The elements of H, and these only, are normal
words of zero length. We denote the set of all normal words by 8.

Every normal word we 3 representst a well-defined element pe P. We shall now show
that every element of P is represented by one and only one normal word. To this end we
introduce mappings of I into itself; to every element g e G, we make correspond a mapping
o,. This mapping o, is to map the normal word

W=58y...5,h

’

on to a normal word w' =wo,
as follows:

(1) Ifn>0, and if s, € S, that is, if 5, lies in the same group G, as g, then s,Ag is a certain
element of G,, which we represent in the form

s,hg =5 (s'eS,, KeH).
Now if s' =1, we put W o=15,8y...5,_18h";
if, on the other hand, s’ = 1, then we omit it and put
W o=5;5y...5, 1.
(2) Ifn=0,orifn>0ands,eS, with f+q, that s, if 5, is not contained in the same group
G, as g, we represent the element /ge G, in the form
hg =s'h" (s'eS,, h'eH).
If now s’ =1, we put w =15.5y...5,5h;
if, on the other hand, s" = 1, we omit it again, putting
W =15,55...5,k.
In this way w’' = wo, is defined for every we®B, and one verifies easily that w’ is again
a normal word. If g is contained in more than one group G,, thus in their intersection H,
then also hg — K < H,
and one confirms without difficulty that then
W =$.5y...5,k,
t A word is a string of symbols; if we interpret it as a product (which is written in the same way) we obtain

an element of the group, and we say the word represents the element. The same element of the group can be
represented by different words.
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508 B. H. NEUMANN ON THE

irrespective of whether one defines it according to (1) or (2), irrespective, that is to say, of
whether one considers g as lying in the same group G, as s, or in a different one.
Thus o, is defined as mapping of X3 into itself. Next we show that if g, g’ are two elements

of the same group G,, then Oog = 0y0p (2:1)

that is to say, the mapping which belongs to the product gg’ is obtained by first carrying out
the mapping belonging to g, then that belonging to g'.

Let W=58y...5,h, W =wo, w =uw0v, and w*=uwo,.
We again distinguish two cases: v

(1) Ifn>0,andifs,eS,, thatis, if s, belongs to the same group G, as g and g, then we put

s,hg =5k (s'eS,, h'eH),

and s'hg' =s"h" (s"eS,, h"eH).
Then either w” = s;8, ...5,_;5"h" or w” = 5,5, ...5,_, k" according as s"=1 or s” = 1. On the
other hand, if we put thgg/ — gk (.S‘* € Sa,) h*e H),
then either w* = s5,5,...5,_15%h* or w* =s;s,...5,_1h*, according as s*=1 or s* = 1.
But as s"h" = S/h,gl — thgg’ — S*h*,

it follows that s” = s* and 2” = A*, and thus also w” = w*. It makes no difference whether
s'#1or s’ =1, as—in case n>1—s,_; can certainly not lie in §,,.
(2) Letn = 0, or >0 but s,€ S, with f==«. Then we put

hg =s'k (s'eS,, h'eH)
and (again irrespective of whether s'1 or 5" = 1)
4 sh'g =s"h" (s"eS,, h"eH).
Thus w” = 5,5, ...5,5"h" if s" 41, and w” = 5,5, ... s, k" if s" = 1. On the other hand, putting
hgg' = s*h* (s*eS,, h*e H),
we have w* = 5,5, ...5,s%h* if s¥==1, and w* = s5;5,...5,/% if s* = 1. Again, as before,
s"h" = s'h'g’ = hgg' = s*h*,

so that s” = s* and A" = A* and finally again w” = w*. Thus in both cases (2-1) has been
proved.

Equation (2-1) means that the ¢, which correspond to the elements ge G, represent the
group G, homomorphically; in other words, if one maps each ge G, on to ¢, and denotes
this mapping by ¢,, so that for all ge G,

80 = 0y
then ¢, is a homomorphism. It follows that for fixed « the ¢, corresponding to ge G, form
a group themselves: G4, =3

say. Therefore every mapping ¢, has a right and left inverse, hence is a permutation of 2.
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Let 2 denote the group of permutations of Y3 which is generated by the X, (¢e A). Then
we prove easily that 2 is transitive on I; it suffices to show that X permutes a single normal
word, say w, = 1, into every normal word. Now if

W=8,5y...5,h

is a normal word, then so are the words

Wy = 15,1,

w, = 8§18y +..5,1,
and furthermore W) = wy0,,

Wy = W0,

w, = wn—lasna

w=w,0,

Thus w = w,0, where ¢ = 0,0, ...0, 0, isin X.

The group 2 and the homomorphisms ¢, (e A) together satisfy the conditions of theorem
(1-1); for ¢, maps G, homomorphically on to £, € 2; and where two such mappings ¢, and
¢4 are defined simultaneously, namely, in H, there they agree—we had seen that for ge H
the mapping ¢, does not depend on which group G, the element g is assigned to. Thus
theorem (1-1) shows that the ¢, can be extended simultaneously to a homomorphism ¢ of
P on to the group generated by the G,¢,—that is, on to X itself.

Next we want to show that ¢ is an isomorphism, hence that X is isomorphic to P. This

requires two preparatory lemmas.

Lemma. If we B is a normal word which represents the element p e P, and if g e G, then the normal

word ,
w' = wo,

represents the element pg e P. (2-2)

Proof. This results immediately from the definition of 7,; for if w=s$5,5...5,h, then
w =s,5,...5,_,8'h', where k" =s,hgin P; (a)
or w =s;8y...5,_1F, where &' =s,hgin P; ()
or w =s55,...5,8", where s'h'=hginP; (¢)
or w =s,5,...5,k", where "= hgin P; (d)

thus in any case w’ represents the product pg if p is the element represented by w.

LemMA. If weB is a normal word which represents the element pe P, if furthermore qe P and
qp = o€ X, then the normal word w* = wo represents the product pqe P. (2-3)

Proof. This extension of lemma (2-2) follows from it by induction over the number of
factors in a representation of ¢ as a product of elements of the G,. Let ¢ = ¢’g, where ¢’ can
be written as a product of fewer factors in the G, than ¢, and where g itself is contained in
a G,. If ¢'¢ =o', then ¢¢ = 0 = ¢'7, because ¢ is a homomorphism and because g¢ = o,.
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510 B. H. NEUMANN ON THE

We may assume that w’ = we’ represents the product p¢’ (by the induction hypothesis).
Butthen w* = w'c, = wo represents the product pg'g = pg, by lemma (2-2), and lemma (2-3)
follows. ;

It follows from this lemma that every element pe P is represented by at least one normal
word weB. For the normal word w, = 1 evidently represents the unit element 1€ P; and
if o = p¢, then the normal word w = w, o represents the product 1p = pe P, by lemma (2-3).

Moreover, it follows that ¢ is in fact an isomorphism. For if p,e P is contained in the
kernel of ¢, that is, if p, ¢ is the unit element ¢ of X—the identical permutation of Y3—and if
we W represents the element pe P, then wt = w represents the product pp,. But a word
w can only represent a single element of P; hence pp, = p and p, = 1.

THEOREM (Schreier 1927). Every element pe P is represented by one and only one normal word
weW. (2-4)

Proof. We have already seen that every pe P is represented by at least one normal word;
it only remains to show that p cannot be represented by more than one normal word. If now
o = p¢, then p is represented by w = w,0, where again w, = 1 e . Let w’ €W be another
normal word which represents the same element p, and let w’ = wy0’'—such a ¢’ exists
because of the transitivity of X; finally, let p” be the original of ¢’ under ¢, so that ¢’ = p'¢;
then w’ represents p’, and thus p” = p, ¢’ = ¢ and w" = w. This proves the theorem.

The uniquely determined normal word representing p we call the normal form of p.
Because of the theorem we may identify the elements of p with their normal forms. Then
2 becomes a group of permutations of the elements of P; in fact, the elements of X are just
the right multiplications of P; with fixed ¢ = ¢g¢ and for all pe P one has

po = pq.
2 is called the regular permutation representation of P. It is well known that right multi-

plications and the regular permutation representation can be defined in the same way for
arbitrary groups, not only for free products with an amalgamated subgroup.t

3. Computation of the normal form; uniqueness of the length

The normal form of an element p e P can be computed without difficulty. Let the element

be given in the form D= 818y 8, (31)

where the g, lie in the groups G,. If two successive factors g, g;,, belong to the same group
G,, they can be combined to a single such factor. We may therefore assume that in (3-1)
no two successive factors lie in the same group G,. If there is more than one factor, that is,
n>1, then none of the g; belongs to the intersection H. Now we start with g,:ifz» = 1 and
g€ H, then p = g, is already the normal form. Ifnot, then g, is contained in a unique group

G,, and not in H. We put g =sihy (5,8, heH);
then s,==1. Now D =8Py gy =58585 &>
where g, = h, g, lies in the same group G;=G,, as g,. Next we put
gy = Syhy (sp€ S84 hye H); ‘
1 Cf., for example, Kuro$ (1944; 1953), §5.
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here again s5,==1, as otherwise g, and thus also g, would be in H. Now

D= S180085 - &y = 51528384 -+ Gu>
where g; = h,g; lies in the same group G, as g;. We continue in the same way until after
n steps we arrive at the normal form
D =5155...5,k.

The normal form we have introduced depends not only on the groups G, and H but also
on the systems S, of left coset representatives which we have chosen in G,. But the method
for finding the normal form of the elements of P, which we have just described, shows that
the length of the normal form does not depend on the choice of the S, but only on the
element of the group itself; we may therefore call it the length of the element:

CoroLrLARY. Ifn>1, 1f b =882 8w

and if no two successive factors g,, g;,, are elements of the same group G, then n is the length of p. If
n =1, the length of p is 0 or 1 according as p lies in H or not. \ (3-2)

The process we have described for computing the normal form of an element of P does
not depend on the fact that P is the generalized free product of the G,. If P is an arbitrary
group containing subgroups G, such that any two different such subgroups intersect in
a fixed group H, then we can choose systems .S, of left coset representatives of the G, modulo
H and define normal words as before. If the element pe P belongs to the subgroup of P
generated by all the G,—and only then—it can be written in the form

D =882 8&n

with each g; lying in a group G,, and no two successive ones in the same. The process
described above then assigns to p a well-defined normal word (of length 7, if n>1; of length
lor0ifn=1) W= 5.5, 5, h,
which represents p. If P is not generated by the G,, then there will be elements of P which
are not represented by any normal word; and if P is not the generalized free product of the
G, then there may be elements represented by more than one normal word. In fact we can
prove a converse of theorem (2-4):

THEPREM. Let the group P have subgroups G, (ce A) whick intersect pairwise in a common
subgroup H, G,nGy=H (w,fcA, asf).

If every element p e P is represented by at least one normal word (as defined above) and if normal words
of different lengths represent different elements of P, then P is the generalized free product of the G,,
and thus in particular every element is represented by a unique’t normal word. (3-3)

Proof. The subgroups G, generate P, as every element of P is assumed to be represented
by a normal word. As generators of G, we choose all its elements; the defining relations can
be taken, one for every ordered pair of elements of G,, to state which element of G, is their
product. We take an arbitrary relation in P; this can be written in the form

818y & =1, (3-4)

1 In terms of a fixed choice of the systems S,.

Vor. 246. A, 65
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with each g; belonging to a G,. If here no successive factors belong to the same group G,,
then the left-hand side is represented by a normal word of length 7, if n>>1; but the right-
hand side is represented by w, = 1 of length 0. This would contradict our assumptions;
hence n =1, and (8-4) is a relation in a G,. Alternatively, if > 1, then there must be two
successive factors g, g, in the same G,. These can be replaced by a single factor, using the
defining relations of that G,. This reduces the number of factors. An easy induction over
this number then shows that the relation (3-4) follows from the defining relations of all the
G,. Hence P is their generalized free product, and the theorem follows.

4. Some special subgroups

We use this theorem, together with the freedom we still have in choosing the systems S,
of left coset representatives, to describe some special subgroups of a generalized free product.

TuroreM (Hanna Neumann 1948). Let P be the free product of groups G, (ee A) with an
amalgamated subgroup H. In every G, let there be given a subgroup A, which intersects H in a fixed

subgroup B, A,CG, A,~H = B.

Then the subgroup M, say, of P generated by the A, is their generalized free product (with amalgamated
B). If, in particular, the subgroups A, have trivial intersection with H, then they generate their ordinary
Jree product. (4-1)

Proof. In every A, we choose a system 7, of left coset representatives modulo B,
representing B itself by the unit element. Then no two different representatives £, ¢ in 7,
lie in the same left coset of G, modulo H, as otherwise {71 would lie in 4,n H = B.
We can therefore choose the elements of 7, to represent the left cosets of G, modulo H in
which they lie, and then complete the system S, by choosing representatives also for the
remaining left cosets of G, modulo H. Thus T, C S, for every ae A. Now if m is an element of
the group M generated by the 4,, then there is a normal word (relating to M and its
subgroups 4,) W= 1,0y t,b ’
which represents it; here every ¢ is different from 1 and belongs to a 7, no two successive
t, 1, to the same, and b e B. But w is also a normal word if considered in relation to P and
its subgroups G,, and as such it is unique by theorem (2-4). By theorem (3-3) then M is the
generalized free product of the 4,, and the theorem follows.

Although this theorem deals only with a very restricted class of subgroups of P, it will
nevertheless prove useful for various applications. The following theorem deals with an
even more restricted situation.

THEOREM. Let P be the generalized free product of two groups A and B, and let their intersection be
H=A4nB.

Let a set of elements t, (where a ranges over an index set A) be given with the following two properties:
(1) Every t, belongs to the normalizer of H in B, that is to say, t, € B and t,H = Ht,.
(i1) No two different elements t,,t5 (a=Ff) lie in the same left coset (or, what amounts to the same
because of (1), right coset) modulo H, that is,

t,H=t,H.
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FREE PRODUCTS OF GROUPS WITH AMALGAMATIONS 513
Then the subgroup Q of P generated by the groups
G, = 1714z,
is the generalized free product of these G, with

H=G,nG; (af)

amalgamated. (4-2)

Proof. We first show that different groups G,, G, intersect in just H. Clearly each G,
contains H, by the first assumption on the ,; hence

HCG,n Gy
Let now ge G, n G,4; then
g=1tlat, =tgla't; (a,a’ed).

This gives tlalt, tyld 'ty = 1.

Now t,¢51is in B but not in H, because of (ii). If ¢ and a’ were not in H, the left-hand side
of our equation would have length >4 and could not be the unit element. Hence at least
one of a, @’ is in H, and then g is in H because of (i). (In fact then 4, a’ are both in H.) It

follows that G,n G4CH,

and thus Gyn Gy = H.

Now let § be a set of left coset representatives of 4 modulo H. Thus every element ae 4 is
uniquely of the form a=sh (seS, heH)

We put S, = ;18¢,.

Then §, is a set of left coset representatives of G, modulo H (= #;1Ht,). Every element g of
) is generated by elements of the G, and hence is represented by at least one normal word

S S+ Satm (Sai € Saqs ke H)
. - P
in Q. Writing Sati) = L@y Sitawy
with §;e .S, we express g as an element of P:

q =t 51t bl S2 by -+ Ty Sl -

Here no§;is the unit element, nor even in H, and successive s,,;, belong to different groups G,,
that is, a(z) Fa(i+1) (¢ =1,...,n—1). Hence no ¢,; ¢}, lies in H. Thus the successive
factors A -1 A 1 A
S0 Loty Lalrs S5 o5 btn—1) B> S

are alternately out of 4 and B, and none of them in H. The first factor ¢}, and the last
t,mh may or may not be in H; if one or the other is not in H, then it is in B, and carries the
alternation further. The normal form of ¢ in P then has length 2n—1 or 2n or 2rn4-1,
according as it begins and ends with a factor in 4, or begins or ends with a factor in 4 but
ends or begins with a factor in B, or begins and ends with a factor in B respectively. Thus the
number 7 is uniquely determined by the element ¢; but this number is the length of a normal
word representing ¢ in @. By theorem (3-3) then @ is the generalized free product of the G,,
and the theorem follows.

65-2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

514 B. H. NEUMANN ON THE

CoroLLARY. T Let P be the ordinary free product of A and B and b an element, not the unit element,
of B. Then A and b=1Ab generate their ordinary free product in P. (4-3)

Here the intersection H is trivial, and we have two transforming elements ¢, = 1, ¢, = b.
The assumptions of the theorem are easily verified.

CoroLLARY. Let P be the free group with two generators a, b. Then the elements b~'abi,
1=0, +1, 4-2, ... are free generators of the subgroup they generate. (4-4)

Here P is the free product of {a} and {4}, the subgroup the free product of all {6 ~#ab?}. The
result is, of course, well known.

5. Elements of finite order; an example

Finally, we prove a theorem on elements of finite order in a free product with an amalga-
mated subgroup.

THEOREM. Let P be the free product of groups G, with the amalgamated subgroup H; if p is an
element of finite order in P, then p is conjugate to an element in (at least) one of the G,. (5:1)

For the proof we require two lemmas. We call the element p € P cyclically reduced if none of
its conjugates in P has smaller length than itself. Clearly every element of P has cyclically
reduced conjugates.

Lemma. If p is cyclically reduced and if 1t has the normal form

D =1515y...5,h

of length n>>1, then s, and s, belong to different subgroups G, = Gj. (52)

Proof. Assume n>1 but s, and s, both in the same G,. Then consider

P o= syl psy = Sy ... 5,08,

As s, ks, € G, we can write s,hsy =s'h" (s'eS,, k' eH),

and p’ has normal form
P =5y...8,45h or p=s,...5,_F,

according as 5’1 or s' = 1. In any case p’ has length n—1; hence p was not cyclically
reduced, and the lemma follows.
LemmA. If p is cyclically reduced and has length n>>1, then for every positive integer k the length of
s k.n; it follows that p then has infinite order. (53)
Proof. In the normal form p=5.5y...5,h

let the component s; belong to G, ;). By lemma (5-2) then «(1)4=a(n). Assume it has been
shown already that the normal form of p¥-! is

k—1 — sl S/ S/ hl

152 - SG-1) a0

and that s{,_;,,€ S, We calculate the normal form of p* by determining successively
51585y ..y Sy and A" such that

" "

sy = sihD (sjeS,q), Ve H)

KVsy = s h®  (s5€S,5, KPeH)

..................

— nn "
he=Vs, = sy h (sheSyms

e H).
t This is also an easy corollary of results of Kurosch (1934); cf. Kurosch (1944) or (1953), §44.
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'FREE PRODUCTS OF GROUPS WITH AMALGAMATIONS 515
Then the normal form of p* is evidently
P =818 e Sy uS1Sg - SHR”,

which has length £.7n, and again s, €.S5,,,. Induction over £ proves the lemma.
The proof uses only that n>>1 and «(1)=a(n), and we can derive from it a converse of

lemma (5-2).
CoroOLLARY. If p has length n>1 and if in its normal _form
p=15,8...5,h

the components s, and s, belong to different groups Gy, and G, then p is cyclically reduced. (5-4)
For let p’ of length n" be a cyclically reduced conjugate of p, say p’ = ¢~ !pt. Then also
p'F = t71pkt. Assume first ' > 1. Then the length of p'* is k.n’, that of p* is k.n, and that of

t~1pk¢ can differ from that of p* at most by twice the length of ¢. If this is m, we have
|k.n'—k.n|<2m

for all £>0, whence n’ = n, showing that p has itself minimal length among its conjugates,
and thus is cyclically reduced. If #n"<1, then p’ lies in some G, and so then does p’* for all .
Hence p’* has length 1 or 0, and we get

|1—k.n|<2m (or |0—Fk.n|<2m)
for all £, which is incompatible with 7> 1.

Proof of theorem (5-1). Let p be an element of finite order in P, and let p* be a cyclically
reduced conjugate of p. Then p* also has finite order, and by lemma (5-3) its length cannot
exceed 1. Hence p* lies in (at least) one of the factors G,, and the theorem follows.

CoroLLARY. The free product of locally infinite groups with an amalgamated subgroup is locally
infinite. (5°5)

(The reader is reminded that a group is called locally infinite if it has no elements =1 of
finite order.)

We remark that this is no longer generally valid for the generalized free product with
different amalgamated subgroups. This is shown by the following example:

ExampLE. Let P be generated by three elements a, b, ¢ with the defining relations
a~tba =671, b7lch=c"1, c¢lac=al. (5-6)
We denote the subgroups generated by pairs of these generators by
G, ={a,b}, G,={b,c}, Gy={c,a},
and we first show that P is the generalized free product of G,, G,, G,. It suffices to show that
the relation a-1bg = b1 (57)

defines the group G;; the other two groups are analogous. If in G, there were still other
relations, which follow from (5:6) but not from (5-7) alone, then a or » would have to have
finite order; for every element of G, can, on account of (5-7), be written in the form a5,
thus a hypothetical further relation in the form a*6# = 1. If here f = 0, then a has finite
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order; if f+0, then 4/ permutes with «, hence 5%/ =1 and b has finite order. However,
no such relation can hold in P; for if we add to the relations of P the further relation ¢ =1,
then we are left with the infinite dihedral group with generators ¢ and b and relations

a?=1, a'lba=>b"1,

and in this 4 has infinite order. Thus 4 has infinite order also in P, and so have ¢ and ¢ because
of the evident symmetry of (5:6). It follows that P is the generalized free product of G;, G,,
G;; and incidentally we see that G, G,, G, are locally infinite.

P, however, is not locally infinite. We consider the element abc in P. This is not the unit
element, for otherwise we would have.

ab =c¢1=>0"lch =0b"1.0"1a"'.b = a=1b3,
hence a? = b% and b* = 1, contrary to what we have just proved. On the other hand,
(abe)? = abeabe = aba='cbe = b~'che = ¢~l¢c = 1;

hence P contains elements of order 2.

CuAPTER II. EXISTENCE CRITERIA FOR GENERALIZED FREE PRODUCTS

6. The compatibility conditions

We now turn to the question under what conditions given groups with prescribed inter-
sections can be fitted together to a generalized free product. We cannot, however, treat this
question at all exhaustively. We begin by formulating it more precisely.

Let groups G, be given, where o runs over a suitable non-empty index set A. In every G,
and to every index fe A let a subgroup H,; be distinguished; H,, is always to be the whole
groupt G,. We then ask: does there exist a group P which is the generalized free product of
groups G, with intersections L AC — H

af a £ Lo
where G, is to be isomorphic to G, and H,, is to correspond to H,; (all «,fe A)? In other
words, there are to be isomorphic mappings ¢, of G, on to G,

G = Gufos
such that always H,s=H,4,.

If there is such a group P, we say that the ‘generalized free product of the G, with amalga-
mated H,,;’ (or simply the ‘generalized free product of the G,’) exists. ]

Certain conditions necessary for the existence of the generalized free product of the G,
are evident. As H,, and Hy, are to be mapped isomorphically on to the same group

G,n Gy =H, ;= Hy,
they have to be isomorphic themselves; the mapping

l’oc/i’ = ¢ac¢/_3"1
+ H,, is not really needed, and has only been introduced for the sake of a slight simplification in expression.
1 This is a somewhat inaccurate mode of expression, as the generalized free product is not constructed
from the given groups themselves, but from isomorphic copies of these groups, and also because not only
the amalgamated subgroups, but also the amalgamating isomorphisms enter the construction—it is, how-
ever, convenient and not ambiguous.
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has to be an isomorphism of H,; on to H,, and
Lo = PP

is the inverse isomorphism of ¢,;. Moreover, the three intersections
Hy,nH,, HynHy,, H,nH,

a, ay? Y
must be mutually isomorphic, as they are to be mapped on to one and the same subgroup
G,n Gyn G,

of P. Specifically, if k,€ H,;n H,, then h,t,, must belong to Hy,, hence to Hy, n Hy,, and

oy?
holouploy =yt

In the same way one can formulate further necessary conditions which stem from the fact

that certain subgroups of G,, Gy, etc., which are intersections of groups H,4, H,,, ..., are to

be mapped on to one and the same intersection of groups G, Gy, ... in P. These further

conditions are, however, all satisfied as soon as the stated conditions are assumed; this is

shown by the following lemma and corollary (Hanna Neumann 1948).

Lemma. Let groups G, (all suffixes range over an index set A) with subgroups H,, and mappings
Ly be given with the following properties:
L. .4 ts an isomorphism of H,z on to Hy,;
I1. v4, s the inverse of v,45
III. ¢4 maps H,zn H,, (tsomorphically) on to Hp, n Hy,.
Let T be a subset of A which contains o and f. Then the iniersections
Da = nyeI‘Haya D/;’ = nyEI‘Hﬁy
are isomorphic, and v, 5 maps D, on to D. (6:1)
Proof. 1t clearly suffices to show that
- D, t,5C Ds.
Ifde D, then de H, 4, hence dt,z is defined and dt, 5 € Hy,. Moreover, for every ye I' we have
' de Hypn H,

ayd

hence diype Hpyn Hy, s

thus diypeNyer Hy, = Dy,
and the lemma follows.

CoroLLARY. If with the same assumption the following further condition is satisfied:

IV. The mapping 1,415, coincides with ,, where it is defined (namely, in H,qn H,), then we

have more generally P
Laploylys b ONA Lyyluplyy - Lua

concide for those elements _for which they are both defined. (6-2)

For it is easy to see that for such elements both mappings coincide with ¢,.

Conditions I to I'V will sometimes be referred to as the compatibility conditions; they are
clearly necessary for the existence of the generalized free product of the G, and we shall
therefore only deal with systems of groups G,, subgroups H,,, and mappings typ Which
satisty these conditions.


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

518 B. H. NEUMANN ON THE

7. The canonic group

Let G,, H, 4, t,,5 (¢, f € A) form such a system which satisfies the compatibility conditions
I to IV. Let each group G, be given by a system of generators g, (ye I',) with defining

relations
Tap (++38ays---) =1 (peP,). (7-1)
Then we consider the group P’, called the canonic group, which is obtained as follows: P’ is

generated by elements g, (x€ A, y € I',) which correspond to the generators of all the groups

G,; the defining relations of P’ are to be
r“p(...,g;y, L) =1 (aeA, peP), (7-1)

and, moreover, to every pair of corresponding elements

Bap = hog(eoes Guys -+-) € Hyg

and hdﬁtdﬁ:h oc:/lﬂa<""gﬂ7>"')€Hﬁoc?
the (‘amalgamating’) relation
Pog(eevs Gos o) = Ppo (s s -0 (7-2")

Throughout the present chapter the canonic group will be denoted by P’; we now proceed
to study this group more closely. We shall see in the course of this chapter that P’ is isomorphic
to the generalized free product of the G, with amalgamated H, if this product exists at all.

The correspondence ,
8oy 8ay
(for fixed e Aand all ye I')) generates a homomorphism 6, of G, on to a certain subgroup
G, = G,0, of P'; for the elements g,,,, satisty at least the same relations as the generators g,
of G,. The subgroups G/, clearly generate P’. Moreover, we have, for every pair of corre-
sponding elements /e H, 4, hi, e Hy,,

hl,, = hi, 5055 (7-3%)
hence corresponding subgroups H,,0, and Hg,0, coincide in P’, and elements which
correspond under the given isomorphisms ¢,, are mapped on to one and the same element
of P’. In P’ we then have evidently for all «, fe A,

H,,0, = Hp,0,C G n Gy
We now show, in analogy to theorem (1-1) (p. 505), that P’ isin a certain sense (cf. Bates
1947) the freest group of its kind.

Lemma. Let P" be a group which contains to every G, a homomorphic map

G, =G,

a

in such a way that elements which correspond under the given isomorphisms v,z are mapped on to one and
the same element of P", i.e. more precisely: such that for every he H, 5 (a, fe A) we have

}”706 = h[’aﬂ”ﬂ; (73”)
then there exists a homomorphism ¢ of P' on to the subgroup of P" generated by the G, ; ¢ maps each G,
(we A) on to G, and for every ge G, it satisfies

80,9 = gn,- (7-4)


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FREE PRODUCTS OF GROUPS WITH AMALGAMATIONS 519

Proof. As 7, is a homomorphism of G, on to G, the elements
Bay = Layla
satisfy at least the same relations as their originals, that is,
Tap (s 8ays ) =1 (peP,). (7-1")
Moreover, we have, by assumption (7-3"), for every pair of corresponding elements

h“ﬂ = koc/)’("‘)gac'y’ ...) GHaﬂ

a.nd h“ﬂtdﬂ :/lﬂzx =}l/3“('“’gﬂ’y’ "')eHﬂlx
the amalgamating relation
Bog(ceos Gays ) = po(evvs 8hys ---)- (7-2")

The elements g;, (e€ A,ye I',) therefore satisfy at least the same relations as the generators

', of P'; h the mappi / "
Sy ence pping el
- generates an homomorphism ¢ of £’ on to the subgroup of P” generated by the g, ; here
G, is evidently mapped on to G ; more exactly: for every ge G, the element gf, is mapped
on to gy,, and the lemma follows.

LemMA. P’ is the generalized free product of the groups G,. (7-5)
Proof. We choose as systems €, of generators of G, simply all the elements of G, ; their union
% = UaEA@OL

then evidently generates P’. As system R, of defining relations of G/, we simply have all the

equations abe-l — 1

that express the fact that the product of the two elements @, 6 in G/, is just the element
ce G. We wish to show that the union of all these systems of relations,

9{ = UogeA 9{oc’
suffices to define P’. As G/, is a homomorphic image of G,, the relations R, must at least
entail the relations Fap(cerllp ) =1 (peP,), (71

which correspond to the defining relations of G,. If, moreover, we are given a pair of corre-

sponding elements Py = hog( s Guys ) €Hyp

and haﬁla“ﬂ:}lﬂ“ :hﬁ“(""gﬂ‘}" "')eHﬁOC’
then R, entails for the element 4" which corresponds to 4, in G,
B = hyp(eees 8 -+-) 5

but the same element 4’ corresponds also to the element /;, € G, because of (7-3') ; it follows

then from R that also Bo=hy (s )
= R (o ey 8y o0

Hence also Prop (oo s ++) = Ppo (o5 &pys +--) (7-2")
follows from the system R of relations. Thus all the relations which we have used in the

definition of P’ follow from the system R, and the lemma follows.

Vor. 246. A. 66
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8. Existence criteria
We are now in a position to establish the following criterion:

THEOREM. The generalized free product of the groups G, with amalgamated subgroups H, exists
if, and only if,

(1) all the mappings 6, of G, on to G, are isomorphisms, and

(2) they map the subgroups H, 5 01 to the corresponding intersections G, n G. (8-1)

Proof. If these two conditions are satisfied, then P’ itself is the required generalized free
product. Conversely, assume the existence of the generalized free product P of the G, with
amalgamated subgroups H,;. Let P be generated by subgroups G, = G,7,, where the 7,
are isomorphisms{ and where always

a,

(More exactly, corresponding elements se H,; and ht,ze Hy, are to have the same map

"y = hiygilg.)

Thus the mapping b, = 1310,
maps G, homomorphically on to G, in such a way that every element 4" e G; n Gy has the
same map under both ¢, and ¢,:

B'd, =h'¢geGyn Gy
Hence we can apply theorem (1-1) (p. 505) and extend all ¢, simultaneously to a homo-
morphism ¢ of P on to P’. On the other hand, there also exists, by lemma (7-4), a
homomorphism # which maps P’ on to P in such a way that for every ge G,

801 = glla-
But then ¢z is an endomorphism of P which maps each G identically on to itself; and as the
G, together generate P, then ¢y is the identical automorphism of P. In the same manner one
shows that 7¢ is the identical automorphism of P’. Thus 7 and ¢ are mutually inverse
isomorphisms, and P and P’ are isomorphic. But here G, and G, just correspond according
to ¢, = n,'0,, whence 0, =7,¢, must themselves be isomorphisms. Moreover, H,, gets
mapped just on to the intersection G, n Gy, which is isomorphic to G, ~ G. This proves that
the conditions are also necessary, and the theorem follows.
The two conditions (1) and (2) of theorem (8-1) each give rise to a further criterion.

THaEOREM. The mappings 0, of G, on to G, are all isomorphic if, and only if, there is a group P”
and to every a.e A an isomorphism 5, of G, on to a subgroup
Go = Gyl
of P" such that corresponding elements he H, 5 and ht,ze Hy, have the same map
iy, = hiy g (8-21)
(For the proof, see p. 521). We then have evidently
H,51,C Gon G,

but the left-hand side can be properly contained in the right-hand side. If P” satisfies the
conditions of this theorem, we say it has the isomorphism property.

1 Thus we could identify G; with G, and think of P as composed of the given groups G, themselves.
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Turorem. The necessary and sufficient condition for ge G, and g0,€ Gy to imply ge H,, (which

entails in particular H,40,=G\nGy)
is that there is a group P" and to every e A a homomorphism , of G, on to a subgroup
Gy = Gy,
of P" such that corresponding elements he H, 5 and hi,z€ Hy, have the same map
hy, = }uaﬁ Np
and that ge G, and gy, e G always implies ge H, ;. (8-22)
We then also have evidently H,n, =Gy Gp. (8-3)

Here the 7, need not be isomorphisms. If (8-3) is satisfied, we say P” has the weak intersection
property. But the condition entering theorem (8-22), namely, that only elements of H,, are
mapped into the intersection G, n G, is a rather more powerful restriction; if it is satisfied,
we say P” has the strong intersection property. Theorem (8:22) means that if P” has the strong
intersection property then so has P’; this is not true, however, of the weak intersection
property, as, for example, the trivial group P” = {1} always trivially has this property.
We now turn to the proof of the two theorems.

Proof of theorems (8-21) and (8-22). The necessity of the stated conditions follows im-
mediately in both cases if one puts P” = Pand 5, = ,. We now assume conversely that there
exist a group P” and mappings 7, with the respective properties; thus P” is to have either
the isomorphism property or the strong intersection property. By lemma (7-4) there is
a homomorphism ¢ of P’ on to the subgroup of P” generated by the G which maps each G,
on to G such that B

. 80,9 = 8o
If the 7, are isomorphisms, they are one-to-one; then the §, must also be one-to-one, hence
isomorphisms, and theorem (8-21) follows. On the other hand, if ge G, and g7, € G} always
implies ge H, 4, and if we have ge G, and g, € G, then :

80,9 =gy € Gy = Gy,
hence ge H,;; thus also P’ has the strong intersection property, and theorem (8-22) follows.
One can expresss the contents of theorems (8:21) and (8-22) simply as follows: If there is
any group which has the isomorphism property or the strong intersection property, then P’
has the same property. We now combine the criteria for the existence of the generalized
free product to the following theorem.

TureoreM (Hanna Neumann 1948). Necessary and sufficient condition for the existence of the
generalized free product of the groups G, with the subgroups H,, amalgamated according to the iso-
morphisms v, is that there is a group P" and to every ae A an isomorphism 3, of G, on to a subgroup
Gy, = G,1, of P", such that corresponding elements he H, 5 and hi,ze Hp, have the same map

h”oc = hLozﬁ 7 £
and, moreover, always H,gn, = Gyn Gg. (8-3)

Briefly: the generalized free product in question exists if, and only if, there is a group P which has the
isomorphism property as well as the weak intersection property. (8-4)
66-2
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Proof. The necessity of the stated condition for the existence of the generalized free product
is seen from the fact that this has itself the isomorphism and intersection properties. The
sufficiency follows from theorems (8-1), (8:21) and (8:22); we only have to show that
theorem (8-22) applies, that is to say, that the weak intersection property (8:3) of P”
together with the isomorphism property implies the strong intersection property. Let then

geG, and gy, e Gg; then a1,€Gyn Gy = H,g,.

As 7, is an isomorphism, g7, has only a single original g, and this then lies in H,4. Thus P”
has the strong intersection property, and the theorem follows.

9. Amalgams and the canonic homomorphism

The theory here developed can be reformulated in terms of amalgams of groups (Baer
1949; Hanna Neumann 1950). A brief sketch may suffice to give an idea of this approach.}

The amalgam A of the groups G, (where again o ranges over some index set A) is an
‘incomplete group’ consisting of the elements of the groups G,, with the product of two
elements of 4 defined if, and only if, they both lie in (at least) one and the same group G,.
If two elements belong to more than one of the groups G,, then their product is to be the
same in all the groups in which they lie, so that in the amalgam their product is uniquely
defined. The groups G, are called the constituent groups of the amalgam. The intersection of
two constituent groups is a group

‘ G,nGy=H,, = Hy,
which may consist of the unit element (common to all groups G,) alone. The amalgam of
given groups can be formed so that given subgroups are identified with their intersections,
according to given isomorphisms between them, precisely when the groups, subgroups,
isomorphisms satisfy the compatibility conditions I to IV (cf. §6).

A homomorphism of the amalgam 4 into a group P is a mapping 5 of 4 into P such that if
a, b are two elements of 4 whose product is defined in 4, then

(ab) = anby
in P. If there exists a one-fo-one homomorphism} of A into a group P, we say the amalgam is
embeddable in the group.
To decide whether 4 is embeddable in a group, we associate with 4 a particular group
P’ and a particular homomorphism ¢ of 4 into the group: P’ is generated by elements

a =af

corresponding to the elements a of 4; the defining relations of P’ are

albl — cl

-whenever a=al, b'=0b0, ¢ =cl and ab=c

in A. We call P’ and @ the canonic group and the canonic homomorphism of A respectively. The
canonic group is easily recognized as the group denoted equally by P’ earlier in this chapter;
the canonic homomorphism ¢ combines within itself all the homomorphisms 6,.

t This approach was used in Neumann & Neumann (1953), and I am taking the liberty of some verbatim
quotation (without indication) from that paper.

1 We reserve the term isomorphism for a one-to-one homomorphism whose inverse mapping is also a
homomorphism.
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THEOREM. If 5 is a homomorphism of the amalgam A into a group P, then there is a homomorphism

& of the canonic group P’ of A into P such that
n="0p.

If n is one-to-one, then 6 must be one-to-one. The amalgam is embeddable in a group if, and only if, the
canonic homomorphism 0 is one-to-one. (9-1)

The first part of the theorem is the counterpart of lemma (7-4); the second part is an
immediate consequence of the factorization of 7, for if a product of mappings is one-to-one,
then the left-hand factor must be one-to-one; and the last part is then obvious. If the canonic
homomorphism is one-to-one, then we say that P’ is ‘freely generated by 4’ or ‘the
generalized free product of the amalgam’. Lemma (7-5) shows that P’ is in any case the
generalized free product of the amalgam

A" = Af.

It is sometimes convenient to have a representation of the canonic group P’ by fewer
generators and relations than were used for its definition.

‘THEOREM. Let H, 5 be generated by elements h, 4, (y € I'y5) with defining relations

To(eeshypys o) =1 (pePyy); (9-3)
let G, be generated by the h,p, (fe A,ye L',;) and further elements g5 (0 € A,) with defining relations
(9-3) and SoleeerBaps soos gy ) =1 (7€ ). (9-4)

Then the elements  hyp, = hy5,0, 815 =850 (0,fecA, yel,, deA,)

generate P, and the relations To(eeoslypys o) =1, (9-3")
Sp(s @aps oo Hoypys o0) =1 (9-4")
Sform a system of defining relations. (9-2)

The proof'is omitted.

If # is a homomorphism of the amalgam 4 into a group P, then every constituent group
G, is mapped homomorphicallyon to a subgroup G, 7 of P. The intersections H, ;are mapped
into the intersections of the corresponding groups

HopnC G0 Gy
If  is one-to-one, then its restriction to G, is also one-to-one, that is an isomorphism ; more-
over, then

for otherwise two distinct elements of G, Gy, outside their intersection, would have the same
map under 7. Even more is true: no element of 4 outside /1, , is then mapped into G, 7 Gy,
that is, H,, is the complete inverse image of G, 7 n G,7: '

H,p = (G,nn Gap)pL. (9-6)

If (9:5) or (9-6) is satisfied for all ,fe A, a=/4, then the homomorphism 7 (or, more
loosely, the group P) has the weak or strong intersection property respectively. Clearly the strong
implies the weak intersection property. If the restriction of 5 to every constituent G, is an
isomorphism, then 7 (or, more loosely, P) has the isomorphism property. We have just seen that
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if 7 is one-to-one, then it has all three properties. The converse is also true; this is seen from
the first part of the following theorem, which summarizes theorems (8-4), (8-21) and (8-:22):

THEOREM. If 5 has the isomorphism property and the strong, or even only the weak, intersection
property, then 5 is one-to-one. There is a homomorphism y with the isomorphism property if, and only if,
the canonic homomorphism 0 has the isomorphism property. There is a homomorphism n with the strong
intersection property if, and only if, 0 has the strong intersection property. (9-7)

If there are two homomorphisms, one with the isomorphism property, the other with the
strong intersection property, then ¢ has both properties and is therefore one-to-one, and
the amalgam is then embeddable in a group. It suffices for this also that there is a single
homomorphism having both the isomorphism and weak intersection properties. But it is
not sufficient that there is one homomorphism with the isomorphism property and another
with the weak intersection property; because the latter entails no restriction whatever on
the amalgam: the trivial homomorphism on to the unit group clearly always has the weak
intersection property.

10. Embedding in an Abelian group

It may be noted that in this chapter no really essential use has been made of the group
property of the algebraic systems under investigation. In fact much of the theory can be
carried over, with only trivial changes, to other and rather more general algebraic systems.
We briefly sketch the special case of Abelian groups.

An amalgam 4 may be embeddable not merely in a group, but even in an Abelian group.
This can clearly be the case only if the constituent groups G, of 4 are all Abelian; if this is
the case, we call the amalgam itself Abelian. To decide whether 4 is embeddable in an
Abelian group, we associate with 4 a particular Abelian group P* together with a homo-
morphism 0+ of 4 into P*. This group is generated by elements

at =af*
corresponding to the elements @ of 4; the defining relations of P* are
atht =c*
whenever a* = afl*, b* = b+, ¢* = ¢f* and
ab=c¢
in A; and, moreover, atht =bta*
for every pair of generators at = af*, b* = b0* of P*. It is not difficult to see that P* is iso-

morphic to the factor group of the canonic group P’ with respect to its commutator group.
One proves the following facts in complete analogy to theorem (9-1):

THEOREM. If 7 is a homomorphism of the amalgam A into an Abelian group P, then there is a homo-
morphism @ of the group P+ into P such that g+
n="0"9.

If 5 is one-to-one, then 0% must be one-to-one. The amalgam is embeddable in an Abelian group if, and
only if, the homomorphism 0 us one-to-one. (10-1)

If 6+ is one-to-one, then we say that P+ is ‘the generalized free sum (or free Abelian
product) of the amalgam (or of the groups G, with amalgamated H,;)’.
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11. Examples

To conclude this chapter, two examples will show how the generalized free product can
fail to exist; they also illustrate the two approaches here presented, the first being couched
in the language of groups, subgroups and amalgamating isomorphisms, the second in the
language of amalgams.

ExawmpiE 1. Let G, be the alternating group of degree 4, order 12; let G, be the dihedral
group of order 8; let Gy be the cyclic group of order 6. G, is generated by two elements
a, b with defining relations

a? = b3 = (ab)® = (ab~1ab)? = 1;
a and b~1ab generate a four-group (the direct product of two cycles of order 2). The group
G, is generated by two elements ¢, d with defining relations

2 =d?= (cd)* =1;

¢ and d~'cd again generate a four-group. Finally, G, is generated by an element ¢ with the
defining relation

e =1.
We put H, ={a,b"'ab}, H, ={c,d 'cd},
H,y = {b}, Hyy = {¢%},
Hyy = {d}, H;y = {¢%}. ‘

One easily confirms that the mappings
atyy =c¢, (b7lab) i, =dled;
by = €% diys = €8
generate isomorphisms. The remaining three isomorphisms are inverse to these. Moreover,
Hyyn Hyy = Hy n Hyy = Hy o Hy, = {1},
hence the compatibility conditions are satisfied. We now form P’; this is generated by
elements a’, b’, ¢, d’, ¢’ with the defining relations
a'? =103 =(a'b')% = (a'b'"1a'h’)? = 1;
?2=d?=(dd)=1; ¢°=1;
a=d, blab =d-'d,
b =e'% d =e.
Ifweputa' = ¢’ = f,¢' = g,thend’ = g% d’ = g%; and P’ is also generated by fand g with the

defining relations 2= (122 = (fr¥ed)? = (fe¥)* = ¢° —1,

e = g8
The last relation implies that fand g commute, and the rest then implies that f = 1. Thus P”
is the cyclic group of order 6 generated by g. As P’ contains no subgroup isomorphic to G,
or Gy, it cannot have the isomorphism property; 6, and 6, must be proper homomorphisms.
It is not difficult to verify that ' does not have the strong intersection property either, but

does have the weak intersection property. The generalized free product of G,, G,, G; with
the given amalgamations does not exist.


http://rsta.royalsocietypublishing.org/

a
N

A\

/ y

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

A \
V. \

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

526 B. H. NEUMANN ON THE
ExampLE 2. We form the amalgam 4 of four free Abelian groups of rank 3:
G, ={a,b,c}, G,={a,c,d},
Gy ={a,d,b}, G,={a,u,v},

the defining relations (not listed) being the commutativity relations. The intersections of
the pairs of constituent groups are to be

A A

SOCIETY

OF

) §

S

SOCIETY

OF

Hy, ={a,c},
Hyg = {a, b},
H,, ={a,bc7 ' u; be™! = au},
H23 = {di d}a
Hy, = {a,cd ', uv; cd™! = u~ 1},
Hyy = {a,db=,v; db= = v~1};
the commutativity relations are again not listed, but only the additional defining relations.
The intersections three at a time and the intersection of all four constituent groups are all
the same group, namely, {a}.
The canonic group
P = {a’, bl’ (),, d,, u/, U,; | - a'u', cd-! = ur..lvr’ d'b -1 = v/..l}
can be generated also by @', &', ¢/, d’; they are permutable in pairs, as each pair belongs to
at least one constituent group, hence P’ is Abelian, and can serve also as the group we
denoted by P*. Now in P’
1=0¢"1.dd 1 .db ' =du.u"W.v1=d.
Thus the canonic mapping § maps the element a==1 of the amalgam on to afl =a’ = 1;
hence 6 is not one-to-one and the amalgam is not embeddable in a group. In fact # acts as
a proper homomorphism on each constituent group, that is, it lacks the isomorphism pro-
perty. On the other hand, one easily verifies that P’ is the free Abelian group generated by
b, ¢, d; and the groups which correspond to the G; are
| G = e}, Gi={d), Gi={d,b),
Gy={u' v} ={'¢,db 1.
They intersect in pairs in
Gin Gy ={c}, Gin Gy = {b'},
GinGy=1{'c'1}, GynGy={d'},
Gyn Gy =1{c'd"}, GijnGy={d'b'"1}.
One verifies at once that (Gyn Gp) 071 = H,p,
that is to say, 6 has the strong (and thus also the weak) intersection property, and lacks only
the isomorphism property.t
These examples have been chosen not only because they show how the isomorphism or
intersection properties can fail, but also because they are in a certain sense minimal. It will
be shown in the next chapter that the free product of fwo groups with an amalgamated

+ This example was constructed by Hanna Neumann to disprove a conjecture of the author.
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subgroup always exists; example 1 shows that already for three groups the generalized free
product need no longer exist. It does, however, exist if at least two of the three groups are
Abelian; this follows from a theorem of Hanna Neumann (1948, theorem 9-1) ; but it is not
sufficient that only one of the groups is Abelian, as is again shown by the first example; and
if one has four (or more) groups, then it does not even suffice that they are all Abelian, as
the second example shows. By contrast the generalized free product of arbitrarily many
cyclical or locally cyclical groups always exists (Hanna Neumann 1950). Further examples,
to exhibit various reasons for which a generalized free product can fail to exist (or,
equivalently, an amalgam can fail to be embeddable in a group), are to be found in Hanna
Neumann (1948), Baer (1949), and Neumann & Neumann (1953); this last contains
a systematic discussion of ‘best possible’ results in the direction here indicated.

CHAPTER III. EXISTENCE OF THE FREE PRODUCT WITH ONE AMALGAMATED SUBGROUP

12. The method of proof

We now return to the important special case first studied by Schreier (1927), namely,
that the intersections of the given groups all coincide to form a single group. In chapter 1
(8§82 et seq.) we investigated the properties of a group which was giver as a free product with
one amalgamated subgroup; in the present chapter we are concerned with the existence of
such a free product.

- We are then given groups G,, where « again ranges over a suitable non-void index set A
and in every G, a subgroup H, which is to play the role of all H, 5 (#+«). The subgroups H,
are isomorphic to each other, and for every pair , fe A an isomorphism ¢, of H, on to H,
is given ; these isomorphisms satisfy

b = L Laplpy = lay:
In this case the question of the existence of the generalized free product can be answered
completely; the generalized free product always does exist.

The method of proof used by Schreier first constructs a normal form like that in chapter1,
§2, for the elements of the product which is to be constructed, then defines a multiplication
of these normal forms, and finally shows that they then form a group; this is just the required
generalized free product. The most laborious part of this proof is the verification of the
associative law of normal form multiplication. This difficulty is avoided by van der Waerden
(1948), who introduces the product of the given groups as a permutation group of the set
of normal words; this is our group X of chapter 1 (p. 509). In fact, van der Waerden deals
only with the case of the ordinary free product (with only the trivial group amalgamated);
but there appears to be no obstacle to an extension of his proof to the case here considered.

We here follow a similar way, which may perhaps not lead to the goal more rapidly than
Schreier’s or especially van der Waerden’s, but which allows us to derive some new supple-
mentary results. We also construct a permutation group—different, in general, from van
der Waerden’s—rather than the required generalized free product itself, and we then derive
the existence of this latter by an application of theorem (8-4) (p. 521).

It is convenient to start off not with the groups G, with their separate subgroups /4, and
amalgamating isomorphisms ¢,,, but rather with the amalgam (cf. §9) of the groups; in

VoL. 246. A, 67
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other words, we think of the subgroups H, as already amalgamated, according to the ¢,
to a single subgroup H. Thus the amalgam, which we again denote by 4, consists of the
groups G, ; and every pair of different constituent groups has the same intersection:

GynGy=H (azf, a,fcA).

In 4 two elements have a product if, and only if, they belong to the same G, ; if they both lie
in more than one G, then they lie in H (and thus in all constituent groups simultaneously),
and their product is the same, whichever constituent group we may wish to assign them to.

13. A permutation group and its properties

As in chapter 1 we begin by choosing in every group G, a system S, of representatives of
the left cosets modulo H. Then every element ge G, is uniquely represented in the form

g=sh (seS, heH).

We again assume, for the sake of simplicity, that H itself is always represented by the unit
element, that is, 1S, for all a.

We now consider the Cartesian product K of the given groups G,, that is, the set of all
functions £ = £(«) of a variable ranging over the index set A and taking values in G,:

k(a)eG,.

One may think of K as the direct product of all groups G—the unrestricted direct product?
if there are infinitely many of them—but the multiplication of elements of K which is then
defined is inessential for our purpose; we shall only be concerned with certain permutations
of the elements of K.

With every element g,e G, we associate a mapping p,(g,) of K into itself by putting,

for ke K, kou(g) = K,

where &' (a) = k(«) .g,, ¥'(f) = k(f) when f=4a. If K is interpreted as the direct product of
the G,, then this defines the right multiplication by the element whose component in G, is
8. in every other G, the unit element. In any case it is obvious that p,(g,) is a permutation
of K, and that all these permutations p,(g,), with g, ranging over G,, form a permutation
group isomorphic to G,; this group we denote by p,(G,). Next we introduce a mapping
7, of K into itself, for every pair a, fe A, a==f. If k is an arbitrary element of K, we first
find the unique representations:

k(“) :Sochac (socesou haeH):
k() = sghy  (spe Sy hye H),

and then put kmyg =%,
where K(a) = s,hg
K (B) = sphas

K'(y) =k(y) fory=a,p.

(Observe that s,/ is an element of G, and 54/, an element of G;.) Ifm,, is carried out twice
in succession then one evidently obtains the identical permutation of K; hence m, is itself
a permutation of K. One also easily sees that 7, and 74, are the same permutation.

T The restricted direct product would serve just as well.
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Now let 7 be an element of H. We show
Waﬂpﬂ(h) ﬂaﬂ = pa(h> 5 (13.1)
that is to say, if K is thought of as the direct product, the ‘right multiplication’ defined

by % qua element of G, is transformed by =, into the ‘right multiplication’ defined by % qua
element of G,. Put again, for arbitrary ke K,

k(a) =s,h, (s €S, h,e H),} (13-2)
Putting also kg ="k, kipp(h) =kyy kom =k, (13-3)

then (with y always different from both « and /)

k

k

kal0) = ky(@) = s,bp
ky() = ky(f) - b= sgh, ki,
ko(y) = ki(v) = k(7);
k(a) =s,h,h =k(a) . A,
F(B) = sphg = k(B),
K(7) = ka(y) = k(7).

Thus the effect of m,,p,(h) 7,5 on £ is the same as that of p, (%), and as £ is an arbitrary
element of K, (13-1) follows.
Next let two elements g, € G, and gge G, be given. We show that

"aﬁ/’,e(gﬁ) Top = Pa(&0) (13-4)

can hold only if g, equals g,, and thus g; = g, € H. For with the notation (13-2) and (13-3)
we have again (@) = 5, b,

F(B) = spho

k(y) = /f( )5
and ky(a) = ky(a) = s, hg,

ko(F) = (/5’) -8p = Sphalps

kao(y) = ki(y) = A(7).
If now Sphags = spl’  (speS; h'eH), (13-5)
then ko (B) = syl
and F(a) = s, I,

K'(B) = siphy,

K(y) = k(7).

67-2
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On the other hand, if £ = £kp,(g,), we have
F'() = 5,7, 80
K'(f) = k(F) = sghs,
K" (y) = k(7)-
In order that £" and £” may be the same element of K, we must then have
Shp=s5 W =h,g,
Then we obtain from (13-5) that gy =h'h'e H
and B = h,gs
and our assertion follows.

Now let y again be different from both « and f, and let elements g;e G, and g, € G, be

iven. We next show that
g * v ﬂaﬂpﬁ<gﬁ) 7Toc,6’ = ﬂaypy(g'y> 7Toc'y (136}

can hold only if g5 and g, are the same element, which then must lie in H. Let again £ be an
arbitrary element of K, and put

ko) =s,h, (s,€8,, heH),
k(ﬂ) :sﬂhﬁ (sﬂGSﬁ’ hﬂe H),
k(y) =s,h, (s,€S,, h,eH).

If now, as before, Sphags = sy’ (spe S, W eH), (13-5)
and correspondingly s, hg, = syh" (syeS,, h"eH), (13-7)
and if ko ppp(8s) Mo =K'

kmo,p,(8,) Moy = K,

then our earlier calculations show that

K (o) = s, I,

K (B) = sghp

K (y) =k(y) = s,h,
and () = s, b,

F'(8) = k(B) = sy,

K'(y) = sih,,.

For £’ and £” to be the same element of K we must then have
Sy =155 Sy=5, h="n"
Then (13-5) and (13:7) give gy = h,'h e H,

g, = h'h"e H,
and our assertion follows.
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14. Schreier’s theorem

We now single out one of the indices in A; let us denote it by 0. Let P” be the group of
permutations of K which is generated by p,(G,) and all 7y, p,(G,) 7y, (2€ A, a==0). If we
introduce also 7, and put it equal to the identical permutation, then

P" = {WOaloa(Goc> ﬂOa}asA'
We can now prove:

THEOREM. The mapping n defined on the amalgam A by
8l = ﬂOaIOa(ga> Moq (goce Goc)
is one-valued on H; it is a one-to-one homomorphism of the amalgam into P". (14-1)
Proof. 1f he H, then for all e A,
hy = T po (1) Moo = po(h),
showing 7 to be one-valued on H. On each G, the mapping 7 acts as an isomorphism, being
obtained by first mapping G, isomorphically on to p,(G,), and then applying the inner
automorphism induced by 7,,. Thus 7 is a homomorphism of the amalgam 4 into P” and
has, moreover, the isomorphism property. It only remains to show that 5 also has the weak
(and thus also the strong) intersection property. Putting
ch = Goc” = ﬂOaloa(Goc) Mo
let g'eGinGy (af, a,fcA).
Then there are elements g, € G, and gye G4 such that
8l =g =8
This means that T0uPa(22) Tou = o0 p(85) Tops

and we have seen that this (which is equation (13-6), p. 530, with 0, «, # taking the place of
a,f,7) is possible only if g, = gse H. Thus

g"< Hy,
and Hp2G,nn Ggy.
But also, trivially, HpCG,nn Gyy;

it follows that 5 has the weak intersection property and—as it has the isomorphism property
—also the strong intersection property, and thus is one-to-one. This completes the proof of
the theorem. Application of theorems (8-4) (p. 521) and (9-7) (p. 524) thengives the theorem
of Schreier (1927):

THEOREM. The generalized free product of the amalgam of the groups G,, with a single sub-
group H amalgamated always exists. In particular the generalized free product of two groups always
ex1sIs. (14-2)

It may be remarked that our proof also establishes the existence of the ordinary free
product, where only the trivial subgroups become amalgamated; but in this special case
one can more simply apply theorem (8-4) to the direct product of the given factors, which
certainly contains them isomorphically and with trivial intersections..

The use of what amounts to the regular permutation representation in this context is
based on (independent) suggestions of Philip Hall, Graham Higman and Wielandst.
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15. Consequences of the progf and of Schreier’s theorem
The following is a corollary of our proof:

CoroLLARY. If the G, are finitely many finite groups then the group P" of theorem (14-1) is also
finite. (15-1)

For then K, as the Cartesian product of finitely many finite sets, is itself finite, and P” is
a permutation group of a finite set, hence also finite. One can easily give an upper bound
for the order of P” in terms of the orders of the G,.

CoroLLARY. A finite amalgam of groups with one amalgamated subgroup is embeddable in a finite
group. ' (15-2)

The proper free product of groups with one amalgamated subgroup is, however, always
infinite; such a product being ‘proper’ if it has at least two factors which contain the
amalgamated subgroup properly.t To see this one only has to observe that in a proper free
product with an amalgamated subgroup one can write down a normal word of length 2;
this is necessarily cyclically reduced, hence represents an element of infinite order (cf.
lemma (5-3), p. 514).

CoroLLARY. The (proper) free product of finitely many finite groups with an amalgamated subgroup
is not simple; on the contrary it has a proper normal subgroup of finite index. (15-3)

For, as we have just seen, the generalized free product is infinite; but P” is finite by
corollary (15-1), and ahomomorphic image of the canonic group P’ bylemma (7-4) (p. 518);
and P’ is isomorphic to the generalized free product because this exists (proof of theorem
(8-1), p. 520).

Ruth Camm (1953) has constructed, by contrast, a group} which is the free product of
two infinite groups with an amalgamated subgroup and which is, moreover, simple. Hence
P" is in certain circumstances isomorphic to the generalized free product, and the corollary
cannot be extended to infinite groups.

We had at first distinguished carefully between the given groups G, and their isomorphic
copies which entered the definition of the generalized free product. Butalready in the notion
of an amalgam, and in the phrase ‘free product with one amalgamated subgroup’ the
distinction has become blurred ; and we shall now use less care in this respect. Thus when the
generalized free product of the G, exists we shall think of it as composed of these groups
themselves; and shall also generally identify isomorphic groups with each other where
permissible and convenient.

The following result is an easy consequence of Schreier’s theorem, and useful for some
applications.

TureorEM. Let Q be a group and let K, be certain subgroups of Q, where o ranges over an index set A.
Let every group K, be embeddable in a group G, (in other words, there is an isomorphism of K, on to
a subgroup of G,). Then Q and the G, can be simultaneously embedded in a group P in such a way that

(for all ae A) G.nQ=K
and (for all a,fe A, a==p) GnGy=K,n K, ; (15-4)

1 An amalgam is called ‘proper’ if it is not already a group, or if it contains two elements with no
product in it.
1 In fact continuously many different such groups.
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Proof. We first form to every a the free product G* of G, and @, amalgamating K, qua
subgroup of G, with K, qua subgroup of @. Then we form the free product P of all G¥,
amalgamating . The existence of the G and of P follows from theorem (14-2). Evidently
P contains all G, and @ as subgroups, namely, as subgroups of its factors G¥. In G¥, and
hence also in P, the intersection of G, and @ is

| G,nQ =K,
If a4, then Gyn GyCGEn Gy = Q,
hence G0 GpC(Gyn Q) n (Gpn Q) = K, n K.
But obviously K,n K;CG,n Gy
hence finally G,n Gy =K, n Ky,

and the theorem follows.

Cororrary.T Every group G can be embedded in a group G* in which every element is, for every
positive integer n, an nth power. (15-5)

For obviously every cyclic group can be so embedded, either in the additive group R of
all rational numbers, or in the multiplicative group S of all roots of unity. Now one embeds
G according to theorem (15-4) in a group G, in which every cyclic subgroup of G is embedded
in an isomorphic copy of R or §. Then every element of G is, for every positive integer z, the
nth power of an element of G,. Then one proceeds with G, as with G, that is, one embeds
G, in a group G, in which every element of G| is an nth power, and so on. In this way one
obtains an ascending sequence of groups

GCGCG,C...

where every element of G; is, for every positive n, an nth power in G, ,. Finally, we take as
* i ; .
G* the union of this sequence: G* — UG,

Then G* evidently has the required property.

We return once more to the question of the existence of the generalized free product of
groups G, with subgroups H, ; amalgamated (according to isomorphisms ¢,.4), in other words,
the question of the embeddability of the amalgam A4 of the groups G,, where the intersections

G,nGy=H,,
now need no longer all be one and the same group. If we denote by K, the subgroup of G,

generated by all H, , with fixed a, variable f=«, then the K, also form an amalgam B, say,
with the same amalgamations:

K,n Ky = H,.
For clearly K,n K,CG,n Gy =H,y,
and also H,,C K, and H,,C K, whence

K,n KyDH,p.

We call B a reduced amalgam; by this we mean an amalgam in which each constituent is
generated by its intersections with the other constituents. Now we can answer the question

1 Cf. B. H. Neumann (1943 a).
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of the embeddability of the amalgam A4 provided we can answer it for the reduced
amalgam B. This is achieved by the following ‘reduction theorem’ of Hanna Neumannt :

THEOREM. The amalgam A of groups G, with amalgamated H,; can be embedded in a group if, and
only of, its reduced subamalgam B (of the K, with amalgamated H,;) can be so embedded. (15-6)

Proof. Any embedding of the amalgam 4 in a group simultaneously embeds the reduced
amalgam B. Assume conversely that B is embedded in a group Q. According to theorem
(15-4) we can then embed @ in a group P which contains the groups G, such that

GaﬁG :Ka(\ Kﬂ:HOC,B;

in other words, P contains the amalgam 4, and the theorem follows.

16. The generalized direct product

In analogy to the theory of the generalized free product one can also develop a theory of
the generalized direct product; we shall give here a brief sketch only.

The group Pis called the generalized direct product] of its subgroups G, (ae A), if Pis generated
by the G,, and if for every pair a=/ in A every element of G, permutes with every element of
Gj. Denoting the intersection of two such groups again by

H,, = Hy, = G, Gy,

o,

one sees that these H,, must all be contained in the centre of P; for an element of H,, is,
qua element of G, permutable with all the elements of all the G,, y 4=, and qua element of G,
it is also permutable with all the elements of G,.

If, conversely, we are given an amalgam 4 of groups G, (¢e A) with intersections H,; and
if, moreover, every H,, lies in the centre of G, (and, by symmetry, in the centre of G), then
we can ask for the existence of the generalized direct product of the amalgam 4, that is the
generalized direct product of the groups G, with the H,, amalgamated. The following
theorem gives a partial answer, in analogy to Schreier’s theorem:

TureoreM. If 4 is the amalgam of groups G, with a single subgroup H amalgamated, where H lies
in the centre of each constituent G, then the generalized direct product of A exists. (16-1)

Proof. The proof is rather simpler than in the case of the generalized free product. But
here the amalgam is not the best tool to use, and we return rather to the situation described
at the beginning of chapter 11 (§6). This we do by providing ourselves with isomorphic
copies G, of the given G, with isomorphisms ¢,, say, mapping G, on to G,. The subgroup of
G, which corresponds to H is denoted by H,. Thus H,¢, = H. Now we form the restricted
direct product K of all G,. Then K contains in its centre the direct product H* of the
mutually isomorphic groups H,. An element #*e H* can be represented as a product

W= T, 1, (KeH)),

t Hanna Neumann (1948, theorem 5-0); for a simpler proof, cf. Baer (1949); the proof here presented is
adapted from Neumann & Neumann (1950).

1 This is the restricted generalized direct product (when A is infinite). We do not here introduce the un-
restricted generalized direct product, nor yet the unrestricted free product. For the latter, cf. Graham
Higman (1952).
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where only a finite number of factors is different from 1. Those elements 4* for which
HaceAh’:x l’oc =1

form a subgroup N of H*, which, as subgroup of the centre of K, is normal in K. The factor
group P = K/N is then the required direct product with amalgamated subgroups. To see
this we remark that N has trivial intersection with each G, hence G,—and thus also G,—
is isomorphically represented by the subgroup G, v N/N of K/N; these subgroups evidently
generate P and are elementwise permutable. If #,e H, and /ze Hj correspond to the same
element ke H, thatis, if /¢, = hyty = h, then h;'h, belongs to N, and 4, and %, become the
same element of P. On the other hand, one easily verifies that no element of G, outside H,
is congruent to any element of any other group Gj modulo N; hence the intersection of
G,v N/N and Gyu N/N in P is exactly the subgroup corresponding to H; identifying
G, v N/N with G, we find that P is the direct product of the G, with H amalgamated, and
the theorem follows.

The existence of the generalized direct product with arbitrary amalgamated subgroups
of the centre can be reduced, exactly as in the case of the generalized free product, to the
existence of the generalized direct product of the reduced amalgam (Neumann & Neumann
1950). Here the subgroups K, of G, generated by the H,, with « fixed are subgroups of the
centre of G, thus Abelian. Hence the reduced amalgam is Abelian, and one is led again to-
investigate the possibility of embedding an Abelian amalgam in an Abelian group (cf. §10).
For an Abelian amalgam the generalized direct product and the generalized free Abelian
product (or generalized free sum) coincide. Thus example 2, §11 (p. 526), shows incidentally
that the generalized direct product of four Abelian groups does not necessarily exist. The
generalized direct product of three Abelian groups, however, always exists (Hanna Neumann
1951, theorem 9). If the generalized direct product of an Abelian amalgam exists then the
generalized free product of the same amalgam also exists. The converse is true if the number
of constituents is four, or less; but not in general when there are five constituents (Hanna
Neumann 1951 ; Neumann & Neumann 1953).

CHAPTER IV. APPLICATION OF THE GENERALIZED FREE
PRODUCT TO EMBEDDING PROBLEMS

17. Extension of an isomorphism of subgroups to an inner automorphism of a supergroup

We now turn to some embedding problems, that is, the following type of question: does
there exist a group with certain properties containing a given group, or several given groups ?
The question of the existence of the generalized free (or direct) product of given groups is
itself a typical embedding problem; theorems (14-2), (15-4) and (16-1) and corollary (15-5)
are embedding theorems. Itis then not surprising that in dealing with embedding questions
the free product with one amalgamated subgroup, whose existence is the contents of
Schreier’s theorem (theorem (14-2)), will present itself as the principal tool.

Let a group G be given with two subgroups 4 and B; we ask under what conditions G can
be embedded in a supergroupt H in which 4 and B are conjugate. As conjugate subgroups

T This term translates the German ‘ Obergruppe’, which is the convenient counterpart to ‘ Untergruppe’
(subgroup).

Vor. 246. A. , 68


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

536 B. H. NEUMANN ON THE

are isomorphic, this certainly can only be possible if 4 and B are isomorphic. We shall now
show that this trivially necessary condition is also sufficient.

TrEOREM. (Higman, Neumann & Neumann 1949). Let the subgroups A and B of G be
isomorphic and let ¢ be a given isomorphism of A on to B. Then there is a group H containing G in which
@ is induced by an inner automorphism; in other words, H contains an element ¢ such that

t~lat = ag (17-2)
Jor every ae A. (17-1)
Proof. We form the free product of G with an infinite cyclic group,

K, =G« {u},
and the same again with another infinite cyclic group:

K, =G * {v}.
In K, we consider the subgroup L, generated by G and «~'4u; this is the free product of
G and u~14u: L =Gxuldu,

by an easy application of corollary (4-3) (p. 514) and theorem (4-1) (p. 512). The subgroup
L, of K, generated by G and vBv~! is likewise the free product of these groups:

L,=GxvBvl.

L, and L, are isomorphic; we obtain an isomorphism of L, on to L, if we map G C L, identic-
ally on to GCL,, and every element u'aue u~'Au on to the element v(ag) v~'evByv~1. We
now form the free product H of K, and K,, amalgamating L, and L, according to this
isomorphism. H contains G as a subgroup; and for every ae 4 we have in H

utau = v(ag)v1.
Putting wv = ¢, we see that tlat = ag (17-2)
for all elements of 4, and the assertion follows.

CoroOLLARY. Let elements a,, b, be given in the group G, where o ranges over a non-empty index
set A. Necessary and sufficient condition for the system of simultaneous equations

tla,t =50, (xeA)
to have a solution ¢ in some supergroup H of G, is that the mapping a, ¢ = b, generates an isomorphism

of the subgroup of G generated by the a,, on to the subgroup generated by the b, (17-3)
This is only a different, equivalent form of theorem (17-1).

CoroLLARY. Two elements a, b of a group G are conjugate in a suitable supergroup of G if, and only
if, they have the same order. (17-4)

Instead of the group generated by G, u and v constructed for the proof of the theorem,
one can of course restrict consideration to the group generated by G and ¢.

CoroLLARY. The group generated by generators of G and the element ¢ and defined by the defining
relations of G and the further relations t-at = ag (17-2)

(for all ae A) contains G (isomorphically ) ; t generates an infinite cycle which has only the unit element
in common with G. (17-5)
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That the relations (17-2) entail no new relations between elements of G follows im-
mediately from theorem (17-1); if in the group defined in the corollary all elements of G are
put equal to 1, then ¢ only remains, and no relation for #; thus the rest of the corollary
follows.

CoRroOLLARY. If G is denumerable, then H can be chosen denumerable. (17-6)
CorovrraryY. If G is locally infinite, then H can be chosen locally infinite. (17-7)

This follows from corollary (5-5) (p. 515) because H can be taken (asin the proof) as sub-
group of a free product of locally infinite groups with one amalgamated subgroup.

18. Philip Hall’s alternative proof
Another proof of theorem (17-1) is given, which uses permutation groups instead of free
products with amalgamations, and which is due to Philip Hall (unpublished).
We consider the regular permutation representation of a group K by right multiplications;
if k*e K, let p(k*) denote the corresponding right multiplication, that is, the mapping
defined by ko(k*) = k.k*

for all elements ke K. If 4 is a subgroup of K, we denote by p(4) the group generated by the
right multiplications p(a) (and in fact consisting of these right multiplications) which belong
to the elements ae 4. This group is isomorphic to 4.

LemMAa. If A and B are subgroups of K, then the corresponding groups p(A) and p(B) are conjugate
in the group of all permutations of the elements of K if, and only if, (i) A and B are isomorphic, and
(22) A and B have the same index in K. (18:1)

Proof. Let m be a permutation of the elements of K, and 771p(4) m = p(B). Then p(4) and
p(B) are evidently isomorphic, and so then are 4 and B. If now ke K, ae 4 and

| mip(a)m = p(b),
then ((km=Y) a) m = kb;
if @ here ranges over the whole group 4, then b ranges over the whole group B, and the
equation shows that the permutation 7 maps the coset (kn71)4 of 4 on to the coset £B of B.
Hence 7 induces a one-to-one mapping of the set of all cosets of 4 in K on to the set of all
cosets of B in K, and 4 and B have the same index in K.

Conversely, let 4 and B be isomorphic, and let ¢ be an isomorphic mapping of 4 on to B;
moreover, let 4 and B have the same index in K. Denote by § and 7" systems of left coset
representatives of 4 and B respectively in K; then every element ke K has two unique

representations k=sa=th (seS, acd, te T, beB).
S and 7" have the same cardinal, for this is the index of 4 and also of B in K; let ¢ be a one-
to-one mapping of § on to T. We now define, for every £ = sae K (se S, ae 4),
km = so.ag.
Then 7 is obviously a permutation of the elements of K. If a*e Aand £ = tb (te T, be B), then
kn~lp(a*)m = (to~t.bg~ . a*) w
=t.(bg™1.a¥) p =th.a*g

= kp(a*§).
68-2
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As £ is an arbitrary element of K, we have thus

m1p(a*)m — p(a*g).
Letting a* range over the group 4, one obtains
mlp(4) m = p(B),
and the lemma follows. It may be remarked that transformation by 7 induces on p(4) just
what corresponds to the isomorphism ¢ of 4 on to B.

LemMA. If A and B are isomorphic subgroups of a group G, then there is a supergroup K of G in
which A and B have the same index. (18-2)

Proof. If G is finite, we put K = G. If G is infinite, let K = G X G’, where G’ denotes an
isomorphic copy of G. Let 4" and B’ correspond to 4 and B respectively under some fixed
isomorphism of Gon to G'. Denote by | G: 4 | the index of 4in G, by | 4 | the order of 4, and
correspondingly for B, etc. Then

K=GxG2GxB'2G24

leads to |K:4|=|G":B"|.|B"|.|G:4],

and K=GxG>2GxA'>2G1B

similarly gives |K:B|=|G":4"|.|4"|.|G:B].

As - |G:4"|=|G:4], |G:B'|=|G:B| and |4]|=|B]|,

then | K:4| = | K:B|, and the lemma follows. One easily sees that the order of K equals
that of G. The assumption that 4 and B are isomorphic can be dispensed with, if Philip
Hall’s group-theoretical proof (here reproduced) is replaced by a purely set-theoretical one.

Theorem (17-1) now follows if G is first replaced by K and then lemma (18-1) is applied.
A further result is obtained from this proof:

CoroLLARY. If A and B are isomorphic subgroups of a finite group G, then they are conjugate in

a finite supergroup H of G. (18-3)
19. Miscellaneous applications

For the purpose of corollary (18-3), H can be chosen as the symmetric group of all per-
mutations of the elements of G. Then the order of H is bounded in terms of that of G. More
important is the fact that A then depends on G only, not on 4 and B; that is, H serves
simultaneously for all pairs of isomorphic subgroups of G which one may wish to make
conjugate. This is also true for infinite groups G if one takes H to be, for example, the
unrestricted symmetric group of all permutations of the elements of K = G x G’, where
G’ is isomorphic to G. This, and a little more, we also obtain from the following theorem:

TueoreMm (Higman, Neumann & Neumann 1949). Let G be a group and let there be given, to
every suffix o in a suitable set A, an isomorphism $,, of a subgroup A, of G on to a subgroup B, of G.
Then there ts a group H which contains G as well as a free group T with free generators t,(ae A) such
that transformation by t, maps every element a, e A, on to the corresponding element a,$ € B,:  (19-1)

G, — a6, (acA, a,cd,). (19-2)
Proof. Let H, be the group generated by G and an element ¢, and defined by the defining

relations of G and la,t, = a,p, (forall a,eA,).


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

' \

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FREE PRODUCTS OF GROUPS WITH AMALGAMATIONS 539

We form the free product H of all H,(ze A), amalgamating G. Then H is evidently generated
by G and all ¢,(ae A), and the relations (19-2) hold in H. To see that the ¢, freely generate
the subgroup 7" of H which they generate, we apply theorem (4-1) (p. 512); the groups
P, G, H, A,, B of the theorem are here H, H,, G, {t,},{1} respectively. It follows from
corollary (17-5) that the {,} are infinite cyclic groups with trivial intersection with G; thus
T 'is the free product of all {¢,} (¢€ A), and the theorem follows.

CoROLLARY. Every group G can be embedded in a group G' in which all elements of G of the same
order are conjugale. (19-3)

We take as index set 4 simply the set of ordered pairs (, b) of elements of equal order in G,
possibly omitting those pairs of elements which are already conjugate in G; and we put

A(a,b) = {a}a B(a, b = {b},
a¢(a, » = 0.

If one applies theorem (5-1) (p. 514), observing that G’ is obtained from G and infinite
cyclic groups by repeatedly forming free products with one amalgamated subgroup and
choosing subgroups, then one sees that no new finite numbers appear as orders of elements
of G’ in addition to those already present in G:

CoRrOLLARY. Omne can choose G' such that every element of finite order in G’ is conjugate to an
element of G then G’ contains, apart from elements of infinite order, only elements whose orders appear
also as orders of elements of G. (19-4)

CoroLLARY. If G is denumerable, then so is G'. (19-5)
For G’ is generated by G and elements ¢, ,), that is, denumerably many elements.
THEOREM. Every group G can be embedded in a group G* in which every two elements of equal order
are conjugalte. (19-6)
Proof. We form an ascending chain of groups
G =G CG CGC ..y
where we put G;,; = G; (cf. corollary (19-3)); and we define G* as the union of this chain
G* = U,G,

Given two elements of equal order in G*, there is a group G; containing both; then they are
conjugate in G, ;, hence also in G*.

CoROLLARY. The orders of elements of G* are, as far as they are finite, also orders of elements of G.
If G has elements of n different finite orders, then G* has exactly n+1 classes of conjugate elements. If in
particular G is locally infinite, that is n = 1, then G* has only two classes of conjugates: one consists of
the unit element, the other of all the remaining elements. In this case G is evidently simple. (19-7)

CoroLLARY. If G is denumerable then so is G*. (19-8)

For G* is the union of a denumerable set of denumerable groups. It may be remarked
that the only group with only two classes of conjugates and not locally infinite is the cyclic
group of order 2; there are only two periodic groups (that is groups without elements of
infinite order) with exactly three classes of conjugates: the cyclic group of order 3 and
the non-Abelian group of order 6.
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20. Embedding a denumerable group in a two-generator group
The following theorem? answers a question proposed by Kuro§ in his book (1944, p. 356).

THEOREM. Every denumerable group G can be embedded in a group H which can be generated by only
two elements. (20-1)

Proof. Let G be generated by elements g,, g,, .... Without loss of generality we take the
generating system (countably) infinite; if G is given in terms of a finite set of generators
81589 -+ & we simply add further generators g, ..o, -.- Without relations, that is, we
consider the free product of G and a free group freely generated by g;, 1, 85195 -+

Let F| denote the free group generated by two elements a, 4; in this we choose a subgroup
U with infinitely many free generators, one of which is to be 4:

uy="b, u =u(a,b), u,=uyab),... (20-21)
Let F, denote a further free group with generators b, ¢; in this we also choose a subgroup V
with infinitely many free generators, again with 6 among them:

Vg ="b, v, =0v(b,c), vy,=r1,(b,¢),.... (20-22)
Now we form the free product K=G=«F,.
This is generated by 4, b, g, g5, -..; if we put wy = b and

w,=gu (1=1,2,...),

that is g = wu;t, (20-23)
then K is also generated by a,b = wy, w,w,, .... Now the elements wy, w;, w,, ... are free
generators of the subgroup W of K which they generate; for if one maps K homomorphically
on to F, by putting all elements of G equal to 1, then wy, w,, w,, ... are mapped on to the free

generators g, u;,4,, ... of U. Hence also the groups W and V are isomorphic, and the
mapping ¢ defined by wd—=v, (i=0,1,2..)

generates an isomorphism. We now form the free product L of K and F,, amalgamating
W and V according to this isomorphism. (This identifies be K with be F,.) L is generated
by a, wy, wy, ..., b,¢; but as w; coincides with v; in L,

w; =v; =1(b,c) (1=0,1,2,...), (20-24)

L is already generated by a, b,c. Now L contains the isomorphic subgroups /| = {a, b} and
F, = {b,c}. We adjoin an element d which transforms F] into F,; thus

dlad=b, d'bd=c. (20-25)

Denote the resulting group by H. Then H is generated by a, b, ¢, d, and because of (20-25)
also by ¢ and d. Thus G is embedded in a group generated by only two elements. This
completes the proof of the theorem.

It is not difficult to express the generators g; of G in terms of ¢ and d. Equations (20-23)

and (20-24) give _
( )8 g =vul.

1 Cf. Higman, Neumann & Neumann (1949); the present proof uses a slightly simpler construction but
with the same basic idea.
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Here one has to substitute for #;, and v, their expressions (20-21) and (20-22) in terms of
a, b, ¢, and then to eliminate a and b by means of (20-25). The choice of independent elements
;in F| and v; in F, is highly arbitrary. We may put, for example, by corollary (4-4) (p. 514),

u; = a~hal, v;=c"c (1=0,1,2,...).

Then we obtain the generators of G in the explicit form

g; = cided " éd?cid e~ detd 2. (20-3)

CoroLrrARY. If G can be defined by n defining relations, then H can also be chosen as a group with

n defining relations. (20-4)
For if rl(gl:gb ) = la tey rn(glagZa ) =1 (20'5)

are the defining relations of G, then the generators ¢ and d of H only have to be made to
satisfy the z relations obtained by substituting the expressions (20-3) for the g; in (20-5).

It may be added without proof that every denumerable group can even be embedded in
a group with two generators of finite order; specifically one generator can be given the
order 2 (or any greater number), the other the order 8 (or any greater number). Itis an
unsolved problem whether one can do it even with two generators of orders 2 and 3
respectively, in other words whether every denumerable group can be embedded in a factor
group of the modular group.

The theorem can be put into a different form:

THEOREM. Let F be the free group generated by two elements ¢, d; denote by E the subgroup of
F generated by the elements

¢; = c~ided " \d'd%cid" e dcd 2 (1= 1,2,...).

If R us an arbitrary normal subgroup of E, and if RF denotes the normal closure of R in F (that is, the
least normal subgroup of F containing R), then

RFAE—R. (20-6)

Proof. We put E/R = G and apply the construction by means of which we have proved
theorem (20-1). Then H = F/RF. That G is a subgroup of H means

Eu RF/RF ~ E/R.
Hence E/E~n RF~E|R,

an isomorphism being induced by the identical mapping of E. As, moreover, RC RF o E,
it follows that R = R n E, and the theorem is proved. B

The relationship between E and F expressed by this theorem can be put differently:

(i) Every normal subgroup of £ is the intersection of E and a normal subgroup of F.

(it) Every homomorphism of £ on to a group G can be extended to a homomorphism
of F on to a supergroup H of G.

Let us call a subgroup £ of a—not necessarily free—group F an E-subgroup if it has this
relation to F; then it is easy to see that, for example, free factors, direct factors, simple
subgroups and subgroups of the centre of a group F are always E-subgroups of F. The
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relation is, moreover, transitive: If E'is an E-subgroup of F and D an E-subgroup of E, then
D is also an E-subgroup of F. The point of theorem (20-6) is that the free group with two
generators possesses £-subgroups with infinitely many free generators.

Mal’cev (cf. Kuro$ 1944, p. 357) has proposed the question whether thereis a denumerable
‘universal embedding group’, that is, a denumerable group containing an isomorphic copy
of every denumerable group as a subgroup. This question can also be answered: There
cannot be such a group. For a denumerable group has only denumerably many two-
generator subgroups; but there are continuously many non-isomorphic two-generator
groups (B. H. Neumann 1937). Hence a group which is to contain an isomorphic copy of
every denumerable group must have order at least equal to the cardinal of the continuum.
The unrestricted symmetric group of permutations of a denumerably infinite set provides
an obvious example.

Theorem (20-1) is in its way a best possible result; for a non-denumerable group requires
as many generators as it has elements, and, on the other hand, a non-cyclic group cannot
be embedded in a group with only one generator. We can, however, derive a related result
for non-denumerable groups:

TraeoREM. Every group G can be embedded in a group G* in which every denumerable subgroup (or,
what amounts to the same, every denumerable subset) is contained in a two-generator subgroup. (20-7)

If G is denumerable, then this theorem contains no more than theorem (20-1). For its
proof we require a lemma.

Lemma. Every group G can be embedded in a group G’ in which every denumerable subgroup of G is
contained in a two-generator subgroup. (20-8)

Proof. Denoting the denumerable subgroups of G by K,, where a ranges over a suitable
index set A, we can (by theorem (20-1)) embed every group K, in a group H, with two
generators. By theorem (15-4) (p. 532) there is then a group G’ containing G and all H,
(here G, K, H,, G’ play the roles of Q, K,, G,, P in the theorem referred to). G’ obviously
has the desired property.

Proof of theorem (20-7). We form a well-ordered ascending chain of groups
G =G, CG,CG,C...C6,C6,,,C...€6, = G* (20-9)

as follows. If1is a denumerable ordinal and if G, has already been defined, we put G, ,; = G,
as defined in the lemma. If1is a denumerable limit ordinal or w,, the least non-denumerable
ordinal, we put G, ~U,.,G,.

Now let g/, g,, ... be an arbitrary denumerable subset of G* = G, ; let G),, be the first group
of the sequence (20-9) which contains gy, g, ..., g,- Then A(n) <w, for every n, and the least
ordinal A not less than all A(r), A =TLub. A(n)

u.b. A(n),

p<A

is also still denumerable. G, contains the whole subgroup {g;, g,, ...}, and in G, , and thus
also in G*, this is then contained in a two-generator subgroup. This proves the theorem.

One easily confirms incidentally that in G, every finite subset is contained in a two-
generator subgroup. A group with this property is said{ to have rank 2; thus every group can
be embedded in a group of rank 2.

T Cf. Kurosch (1939 or 1944, §48); Mal’cev (1948).
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CHAPTER V. THREE REMARKABLE GROUPS OF GRAHAM HIGMAN’S
21. Two problems of Hopf’s

More than twenty years ago Heinz Hopf proposed two group-theoretical problems (and
a topological one, from which they had stemmed). The problem which was known as
‘Hopf’s problem’ (cf. Kuros 1944, pp. 75, 356) asks whether a finitely generated group can
be isomorphic to a proper factor group of itself; the other problem, which Hopf recalled at
the recent Fourth British Mathematical Colloquium, asks whether two finitely generated
groups are necessarily isomorphic if they are homomorphic images of each other. Both
problems have now been solved; a group with two generators and infinitely many defining
relations has been constructed by the author (1950), another with three generators and only
two defining relations by Graham Higman (19514), each of these groups being isomorphic
to a proper factor group of itself. Higman’s example is given here, but immediately in a form
in which the second Hopf problem is also solved (B. H. Neumann 1953).

Let G be the group with three generators a, b, ¢ and the two defining relations

a~tba = b2, (21-1)
be = cb. (21-2)
The element b, = aba™!

is a square root of b, that is to say, b3 = b. We denote by d the commutator of 4, and ¢,
d=bylc b ¢,

and first show that d is not the unit element in G.

G is the free product of the subgroup 4 generated by a and b and defined by (21-1), and
the subgroup C generated by & and ¢ and defined by (21-2), with the cyclic subgroup
B = {b} amalgamated. Neither 4, nor ¢ lie in this amalgamated subgroup. Hence in the
commutator b7¢71b,¢ no two successive factors belong to the same group 4 or C; by
corollary (3-2) (p. 511) then this element has length 4 and is certainly not the unit element.

Let D denote the normal closure of 4 in G,

D = {d}°,

that is, the least normal subgroup of G containing d. Then D is not trivial, as we have seen;
but D has trivial intersection with both 4 and C. To see this one only has to consider the
homomorphism of G on to the direct product of 4 and the cycle {¢}; as this direct product
contains 4 and C, the kernel of this homomorphism has trivial intersection with both
subgroups; and this kernel contains D.

Now it follows from the structure theory of subgroups of generalized free products{ that
if a normal subgroup of a free product with one amalgamated subgroup has trivial inter-
section with the factors, it is a free group. Hence D is a non-trivial free group.

Let S denote the subgroup of D generated by all squares of elements of D. Then S is a
proper subgroup of D. If next 7 stands for the normal closure of 4% in G,

T — (a2,
t Hanna Neumann (1949, theorem 13-0 and the first paragraph of p. 540).

VoL. 246. A. 69
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then 7'is a subgroup of S, because it is generated by the conjugates of d?, that is, by squares
of elements of D. Thus 7" is a normal subgroup of G properly contained in D. In particular
d cannot lie in 7'; but d? does. Putting

H=G|T,
we see that the element 7" of H is not the unit element but has order 2.

On the other hand, G is locally infinite, being the free product of the locally infinite
groups 4 and C with an amalgamated subgroup (cf. corollary (5-5), p. 515). Hence G and
H are not isomorphic.

Evidently H is a homomorphic image of G. We now show that G is also a homomorphic
image of H. Distinguishing the elements of H by primes:

al'=a, bT =0, ¢T=¢

and correspondingly by =a'b'at, d =b"lc"1bc,
the defining relations of H are a'a =10 (21-3)
b'e =c'b, (21+4)
d?=1. (21-5)

We consider the mapping x of H into G defined by
apu=a, b'u==0% cu=c

As in G obviously a~1b%a = b* = (b?)2,
b% = ¢b?,
the relations corresponding to (21-3) and (21-4) are satisfied by the maps under . Also
bipu=ab’a' =b
and d'u= (b7l byc"y = b~ 1c1be = 1.

Hence therelation corresponding to (21-5) is also satisfied, even as a consequence of the more
stringent d’4 = 1. The mapping x then generates a homomorphism of H into G; but this is
in fact on to G, because a, 6%, ¢ generate the whole of G. Thus we have shown:

THEOREM. The groups G and H defined above in terms of three generators with two and three defining
relations, respectively, are not isomorphic, but are homomorphic maps of each other. (21-6)

If we combine the homorphisms of G on to H and of H on to G, we obtain an endomorphism
of G on to itself. This maps a on to 4, b on to 2, ¢ on to ¢; its kernel is D = {d}¢. Thus the

factor group G, = G/D
is isomorphic to G; but it is a proper factor group because D is not trivial. Thus we also see:

CorovrrLARY. The group G defined above in terms of three generators with two defining relations is
isomorphic to a proper factor group of itself. (21-7)

22. Chains of normal closures and subgroups in a free group
If we put, still in the notation of §21,
a~tbab=2 =r, b7 lclbe =y,

then G is isomorphic to the factor group F/R of the free group F = {a, b, ¢} with respect to
the normal closure of r and s R = {r,s}%.
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Similarly, putting again ab~la~claba=1¢ = d,
G, is isomorphic to the factor group F/R,, where
Ry = {r,s,d}¥ = {r,d}.
To see that s is contained in {r, }¥ we only have to observe that if 7 and 4 are equated to 1,
thesquare root b; = aba™! of b commutes with ¢, hence # commutes with ¢, thus s also equals 1.
R, is a proper supergroup of R, as G, is a proper factor group of G. Now G is mapped

isomorphically on to G}, and thus R on to Ry, if we replace a by @, b by b, = aba™!, and
¢ by ¢; for this replaces s by 4, and r by

rn=a'l.aba"'.a.(aba"')"% = bab%a"l,

which is a conjugate of 7. Hence we obtain R, from R by applying to the free group F the
automorphism « defined by

ax = a,
ba = aba™1,
o = .

Thus RCR, =Ru.

Repeated application of « gives a properly ascending chaint of subgroups

RCRaCRx2C...,

each term of which is normal in F:
Ror = {rar, sam¥;

every term then is the normal closure of two elements. We deduce two consequences, the
first of which answers another question proposed by Kuro§ (1944, p. 857):

THEOREM. There exists a normal subgroup of a free group of finite rank (in our case: three) which is
mapped on to a proper supergroup (or, equivalently, a proper subgroup) of itself by an automorphism of
the free group. (22-1)

TueoreM. There exists a properly ascending infinite chain of normal subgroups of a free group of
Sinite rank (in our case: three), each term of the chain being the normal closure of two elements. (22-2)

In both cases the rank of the free group can be depressed from 3 to 2. For a normal
subgroup mapped on to a proper supergroup by an automorphism one uses the author’s
example (1950) ; the normal subgroup is then, however, not the normal closure of a finite
set of elements. A properly ascending chain of normal closures of two elements in a free
group of rank 2 one obtains from the example here presented by applying theorem (20-6)
(p. 541) ; however, the normal subgroups in the chain then are no longer obtained from each
other by automorphisms of the free group. Itis not known at present whether the free group
of rank 2 contains a normal subgroup which is the normal closure of a finite set of elements
and which is mapped on to a proper supergroup by an automorphism of the free group. Itis
likewise unknown whether there is a group with two generators and finitely many defining
relations which is isomorphic to one of its own proper factor groups.

1 By repeated application of the inverse automorphism the chain can also be completed to a properly
descending infinite chain.

69-2
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One can ask the corresponding questions for subgroups generated by finite sets of elements
instead of for normal closures of finite sets of elements: can there exist in a finitely generated
free group F a properly ascending chain of subgroups of fixed finite rank? Can a subgroup
of finite rank in a free group F be mapped on to a proper supergroup of itself by an auto-
morphism of F? The answer to both questions is negative; and that independently of the
rank of F. This results from the following theorem.

TueoreM. Let the group G be the union of a chain of proper subgroups
G,C G,CG,C ...

each of which can be generated by n or fewer elements (n a finite number). If G can be decomposed into
a free product G=HxK

and if H can be finitely generated, then H can be generated by fewer than n eléments, and K cannot be
Sfinitely generated. (22-3)

Proof. As union of an infinite chain of proper subgroups G can certainly not be finitely
generated.T Hence the same is true of at least one of the two free factors. Let now H have
a finite set of generators; then there is a number z such that they all lie in G, that is HCG,.
Then G; is also freely decomposable,} with H as one of the free factors:

G; = HxK,.

By Gruschko’s theorem§ the minimal number of generators of G, is the sum of the corre-
sponding minimal numbers for H and K,. We may assume K; non-trivial, because we can,
if need be, replace G; by a proper supergroup which occurs in the ascending chain. The
minimal number of generators of H 1s, therefore, actually less than n, and the theorem is
proved.

CoroLvrARrY. Under the same assumptions G is not free. (22-4)

For a free group of infinite rank has free factors of arbitrarily high finite rank.

Cororrary (Takahasi 1950; Higman 1951 a). 4 properly ascending chain of subgroups of finile,
bounded rank in a free group breaks off. (22-5)

For otherwise its union would not be free, but every subgroup of a free group is free.

- CoroLrary. (Higman 1951 a). No subgroup of finite rank of a free group is mapped on to a proper
supergroup by an automorphism of the free group. (22-6)

23. Finitely generated infinite simple groups

We next turn to the question of the existence of finitely generated infinite simple groups.
This question was raised by Kuros (1944, p. 356) and answered by Higman (19514), whose
existence proof we here reproduce.

1 B. H. Neumann (1937); cf. also Kuro§ (1944, p. 78).

+

I Kurosch (1934); cf. also (1944, §44).
§ Gruschko (1940); cf. also B. H. Neumann (19435) and Kuro$ (1944, §46).
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The group G which we shall study is generated by four elements a, 4, ¢, d and defined by

the relations a~lba = b2, (23-1)
b~lch = c?, (23-2)
¢ lde = d2, (23-3)
d-'ad = a?. (23-4)

We first show that G is an infinite group.

In the group 4 with two generators a, b and the defining relation (23-1), the cyclic sub-
groups generated by a and b are infinite and have trivial intersection. If B denotes the group
generated by b, ¢ with defining relation (23-2), then 6 and ¢ similarly generate infinite cycles
with trivial intersection. We can form the free product of 4 and B amalgamating b and thus
obtain a group P generated by «, b, ¢ and defined by relations (23-1) and (23-2). The sub-
group of P generated by @ and ¢ is the free group freely generated by these two elements
(Theorem (4-1), p. 512). The group @ generated by ¢, d, a with defining relations (23-3) and
(23-4) is evidently isomorphic to P; hence also in this group a and ¢ generate a free group of
rank 2. If now we form the free product of P and @ amalgamating the free subgroup
generated by a and ¢, we obtain just G; and as, for example, {4} is an infinite cycle, G is
certainly infinite.

Next we show that G has no proper subgroup of finite index. If G had a subgroup of finite
index > 1, then it would also have a normal subgroup N of finite index > 1; then G/ N would
be a finite group G, with four generators, which we again denote by q, b, ¢, d and which
satisfy inter alia the relations (231 to 23-4). We show that such a group G, is necessarily
trivial, thus N = G, contrary to the assumption that the index of N in G is greater than 1.

We even show a little more. We add to the defining relations of G only one further relation

=1 (2>0); (23-5)

such a relation must certainly be valid in a finite group; then it will be seen that the resulting
group—Ilet us again denote it by G,—is trivial.
Transforming b by a* we obtain from (23-1) and (23-5)

b= b2,

Hence 6 also has finite order, and the order f, say, of b divides 2*—1. Similarly we see that
¢ has finite order y which divides 2/ —1, and that d has finite order ¢ which divides 27 —1;
and finally @ must also divide 2° —1. If one of the numbers a, £, 7, § equals 1, then they all
equal 1, and G is trivial. Let us then assume on the contrary that a,f, 7, § are all greater
than 1; if we denote the least prime divisor of «, 8,7, d by 7, m,, m,, T, respectively, then
My <.
For as f# divides 2*—1, we have 2=1 (mod m,);
hence « is divisible by the exponent to which 2 belongs modulo 7, that is by a divisor (>1)
of my—1. Similarly we get ny<m, <my<,,
thus finally 7, <, which shows that the assumption that «, 4, 7, § are greater than 1 leads
to a contradiction.

69-3


http://rsta.royalsocietypublishing.org/

a
s \
A

ma \

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) §

A \

4
y

a
, §

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

548 B. H. NEUMANN ON THE

Thus we have shown that G has no proper normal subgroup of finite index, hence no
proper subgroup whatever of finite index. As G is finitely generated it possesses a maximal
proper normal subgroup N (B. H. Neumann 1937). Then G/N is a simple group because
N is a maximal normal subgroup, and infinite because N is a proper subgroup of G, and
finitely generated because G is finitely generated. This shows the existence of an infinite
simple group with finitely many generators. This proof is remarkable in that it is a non-
constructive existence proof: such proofs are not uncommon in analysis, but they rarely
occur in algebra and theory of groups. Recently Ruth Camm has constructed explicitly
a simple groupt which is the free product of two free groups of rank 2 with an amalgamated
subgroup; this can then be generated by four elements, and in fact also by only two, and
requires infinitely many defining relations. It is an unsolved problem whether there are
infinite simple groups with a finite number of defining relations.}

One can vary Higman’s construction by taking more than four generators with corre-
spondingly more relations, that is by considering the group with generators a,, a,, ..., 4,
and defining relations =@y (= 1,2, ..., n—1),

a,laya, = a.

The same way leads to the same goal. If, however, one puts n <4, then one only gets the
trivial group. This is immediate for » = 1,2. If n» = 3, one can proceed, for example, as
follows:

G has three generators 4, b, ¢ and defining relations

a~'ba = b2,

b=1ch = ¢?,

¢ lac = a2
The first gives b=lab = ab™!,
hence b~iabt = ab~,

and similarly from the second relation,

¢7ibet = bei.
Transforming the third relation by b, the left-hand side becomes

b~lc7Yach = c2ab=1c? = a*c?h~1,
and the right-hand side b~1a%h = (ab™1)? = a%b~3.
Hence 2 =a"2%"2,
Now transforming & by ¢~2, we get
be? = ¢2bc™2 = a?b72.b.b%® = b,

thus ¢2 = 43, and b and ¢2 commute. But then ¢ =¢%, c¢=1,and alsoa =b = 1.

1 Ruth Camm (1953); the method yields continuously many such groups.
+ Higman (19515). Such a group, if it exists, can necessarily be finitely generated.
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Incidentally there results a new example of a system of three groups whose generalized
free product with certain amalgamations does not exist (cf. chapter 11, § 11). For if we put

Gy ={ay, by; ar'bya, = b3},
Gy = {by, Cp; b3c20y = c3},
Gy = {¢5, as; c5a3¢5 = a},
Hy, ={b,}, Hy = {by},
Hyg ={a}, Hy = {as},
Hyy = {c,}, , Hyy = {e3},
(with the obvious isomorphisms between these subgroups), then the group P’ of chapter 11
(the canonic group) becomes trivial, and the generalized free product does not exist. Here
the isomorphism and strong intersection properties are lacking, the weak intersection

property (trivially) not. This example may be compared with that in chapter 1, § 5, where
very similar relations lead to a quite different result.

24. A problem of Kurosch’s

Finally, we deal with another question proposed by Kuro§ (1944, p. 358) : whether there
exists a group which is not free but every denumerable subgroup of which is free; we shall
present an example of such a group which is again due to Graham Higman (1951¢). The
corresponding question for free Abelian groups has been solved by Specker} by showing
that the unrestricted direct product of a denumerable infinity of infinite cyclic groups is not
a free Abelian group (that is to say, not the restricted direct product of continuously many
infinite cyclic groups), but that every denumerable subgroup of it is a free Abelian group
(that is then the restricted direct product of at most denumerably many infinite cyclic
groups).

Before proceeding to the construction of Higman’s group we prove a theorem likewise
due to Higman:}

THEOREM. Let the group G contain a family § of subgroups F,, (where o ranges over an index set A)
with the following properties:
(a) Every F, s a free group of finite rank.
(8) If F,C Fythen F, is a free factor of Fy.
(¢) Every finite subset of G (or, equivalently, every finitely generated subgroup of G) is contained
in a group F,.
Then every denumerable subgroup of G is free. (24-1)

Proof. One sees easily that G is locally free. If H is a denumerable subgroup of G and if
H is finitely generated, then H is a subgroup of a free group F,, hence itself free. There
remains only the case that H requires infinitely many generators /,, ,, .... We form a chain
of groups F,(;, C £, C .. in F as follows. Let F,;, be an arbitrary group in § containing 4, ;

T Specker (1950); the result is also implicit in more general results of Baer (1937).

1 Higman (1951¢) ; the reader is referred to this paper also for a number of further interesting results, and
for a more general theorem of which the one here proved is only a part. For some of the results, cf. also
Takahasi (1950).
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and inductively, if F,; is already defined, then {F, ), #;,,} is finitely generated, hence con-
tained in a group of the family §, and one such group we take as F, ). As F,; is a free
factor of F,,;,, and as both are free groups, a system of free generators of F,;, can be
completed to a system of free generators of F,;, ,. Starting from free generators of F,, we
thus obtain step by step a system of free generators of the union F of the chaint

Fy Cly € oo
Hence F'is a free group; but H is evidently contained in F, and is, therefore, itself free.

CoroLLARY. With the same assumption every F, is a free factor of every finitely generated subgroup
F of G which contains F,. (24-2)

For F is contained in a group Fge §; F, is by assumption a free factor of #;. Because
" of F,CFCFy, then F, is also a free factor of F (Kurosch 1934; cf. also 1944, §44).

Now we define Higman’s group G* by transfinite induction. Let G, be a free group
with 8, generators a,,, ag,, @3, --.. If 1 is a denumerable ordinal, and if G, is a free group
with X, free generators a,,, a,,, )3, ..., then we take for G, ,, the group freely generated by
elements

Ar1, 1 v, 20 Aarn,3 oo

and identify G, with a subgroup of G,,, by putting
i = A1, i003,m1 (1=1,2,...). (24-3)

If 1 is a denumerable limit ordinal or if 1 = o, (that is the least non-denumerable ordinal),
and if G, has already been defined for all <4, then we take as G, the union

GI\ = U//z<AG,LL'
We thus evidently define a well-ordered ascending chain of groups
G,CG,CG,C...CG,, (24-4)

which can only break off when G, is no longer a free group of rank §,. This can certainly
happen only if « is a limit ordinal, as the definition immediately shows; and it must happen
at the latest for « = w,, for the chain (24-4) is properly ascending, and G, —provided the
chain can be carried thus far—is the union of &, denumerable groups, hence itself of order
N, and can no longer be generated by &, elements. Our first aim is to show that the chain
(24-4) can in fact be continued that far, in other words, that for every denumerable limit
ordinal A the union ‘
GA = U n< A G "

is still a free group of rank 8, provided all G, with # <1 are free groups of rank .

G, is clearly still denumerable, being a union of denumerably many denumerable groups.
As union of a properly ascending chain, G, can certainly not be finitely generated.} It only
remains to show that G, is free. This we show by transfinite induction, using theorem (24-1) ;
to this end we sharpen both the induction hypothesis and the proposition to be proved.

+ The chain need not increase properly, and the union can itself belong to the chain and the family; the

conclusion is not affected.
1 B. H. Neumann (1937); cf. also Kuro$ (1944, p. 78).
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Let @, be the family of groups
W {a,u,lb a,u2’ R a/u'}’

where 4 is an ordinal for which G, is already defined and is a free group with free generators
a,,a,,0a, -.., and where ¢ ranges over the positive integers. Further put

Tl % u2s “u3s
F, = U, ®,;

V\/l/

and if G, is already defined for all <4, put
C&?\‘ = U,u</1q)/4 = U,u</lg'y'

We next show that these families satisfy the assumptions of theorem (24-1):

(a,) Every group F,; is evidently a free group of finite rank.

We now assume further

(5,) that v<g, m<p and F,;C F,; implies that F,, is a free factor of F,;, and

(c,) that every finitely generated subgroup of Gﬂ is contained in a group Fe .

We firstshow the corresponding propertiesof ., = §,v @, ;; here (¢,,,) isimmediately
obvious, because the generators of a finitely generated subgroup of G, ; involve only afinite
number of the ,,, ; and the subgroup then is contained in a F,, ;e @,,,. To provealso
(b,+1) we remark first that the case v <<, m<p is already contamed in(b,). Ifv=p+1,1<p
then a,,, ; is an element of F,,, ; = F,;, but not of F,;, and the premiss is not satisfied. If
v = u+1, m = u-+1, the validity of the proposition follows immediately from the definition
of the groups F,;. Now one easily sees from equations (24-3) that

a

w4

w2 e Qi Qpnyivls Qpan,iv

form also a system of free generators of G, ;. Hence F;is a free factor of F,,, ;if F,CF,, .,
that is if s <j. Finally if v<g, 7 = g +1, then F,,is contained in, and a free factor of a group
F,, and F,, is contained in, and a free factor of, a group F, 41, @nd thus F); is in its turn
a free factor of ¥, . F,; = F,, ; is either a subgroup and free factor or a supergroup of
F,.1,4» and one again sees easily that F,, is also a free factor of F, ;. This completes the proof
of (b,.1); (a,..) is obvious.

Next let A be a limit ordinal (denumerable or w,), and let the induction hypothesis be
satisfied for all x<<A. Then F¥ satisfies conditions (a%) trivially; and also (5%): because
v<A, m<A and F,;CF,; implies that F,, is a free factor of F;, for there is a <A with v<y,
n<pu. If, furthermore, a finitely generated subgroup H of G, = U, ., G, is given, then H is
already contained in a G, with <4, hence in a suitable F;e §,. Thus we have also (c}):
every finitely generated subgroup of G, is contained in a group F;e §¥. Now by theorem
(24-1) every denumerable subgroup of G, is free, and thus G, is itself free if 1 is denumerable.
We finally show that then T, — Ftod,

again satisfies the assumptions (a,), (8,), (¢;), where @, is defined from an arbitrary system
of free generators a,, a,,, 4,3, ... of G,. Again (a,) is obvious, and (c,) is a trivial consequence
of (¢¥). To prove (4,) we need only consider the case v<<A, 7 = A, F,;C F);. But then F,, is
a free factor of F); by the corollary (24-2) ; for F,; belongs to the family &% which satisfies the
assumptions of theorem (24-1), and F); is finitely generated.
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Transfinite induction thus shows that G, is defined for all denumerable A and that it is
afree group of rank §,, and that G, is at any rate still defined ; this latter group we denote by
G*. By the argument just presented the family §¥ satisfies in G* the conditions of theorem
(24-1); hence every denumerable subgroup of G* is free. It only remains to prove that G*
is not itself free. Let us assume on the contrary that G* is a free group with free generators
a’, where o ranges over an index set A ; this has the cardinal §,, for we had already seen that
the cardinal of G* is §&,. Now let the generators of G, be expressed in terms of the a; in
every aye Gy only a finite number of the a¥ is involved, hence for all of them together only
denumerably many a¥, and there are still &, further free generators of G* left over. If N
denotes the normal closure in G* of all those ¢ which enter the expressions for a,, @9, dgs, -+ -
then we find that G*/N is still a free group of rank &, in particular, therefore, a non-trivial
free group.

But we now show inductively that N contains all groups G, of the chain which defines G*;
for assume G,C N has already been established. Because of equations (24:3) then

Na, ;= Nai, ;0 (=12..);

this means that the element Na,,, ; of G/Nis a 27-th power for arbitrarily large positive

integers n. In a free group only the unit element has this property; hence
a1, €N (1=1,2,..),
which implies G,,; € N. If 1is a limit ordinal and if G,C N is true for all x<4, then also
G,=U,.,G,CN.

Transfinite induction then shows G* C N, that is N = G*, contrary to G*/N being a non-
trivial free group. Thus the assumption that G* is free leads to a contradiction, and we have
proved:

THEOREM. The group G* constructed above is not free although all its denumerable subgroups are free.
(24-5)

I am greatly indebted to Philip Hall and Graham Higman, who have very generously
permitted me to use unpublished results and methods of theirs, and I take this opportunity
of recording my gratitude to them. Very special thanks are due to my wife, whose work
forms much of the basis, as well as part of the superstructure, of what is here presented, and
to whose advice and help I have often had recourse during the preparation of the ‘ Anhang’
and this essay. A

REFERENCES

Baer, R. 1937 Abelian groups without elements of finite order. Duke Math. J. 3, 68-122.

Baer, R. 1949 Free sums of groups and their generalizations. An analysis of the associative law.
Amer. J. Math. 71, 706-742,

Bates, Grace E. 1947 Free loops and nets and their generalizations. Amer. J. Math. 69, 499-550.

Camm, Ruth 1953 Simple free products. J. Lond. Math. Soc. 28, 66--76.

Gruschko, I. A. 1940 Uber die Basen eines freien Produktes von Gruppen. Rec. Math., Moscou
(Mat. Sbornik), N.S., 8 (50), 169-182 (Russian, German summary).

Higman, G. 19514 A finitely related group with an isomorphic proper factor group. J. Lond. Math.
Soc. 26, 59-61.


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
)\
ZASENO N S}

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FREE PRODUCTS OF GROUPS WITH AMALGAMATIONS 553

Higman, G. 195156 A finitely generated infinite simple group. J. Lond. Math. Soc. 26, 61-64.

Higman, G. 1951¢ Almost free groups. Proc. Lond. Math. Soc. (3) 1, 284-290.

Higman, G. 1952 Unrestricted free products, and varieties of topological groups. J. Lond. Math.
Soc. 27, 73-81.

Higman, G., Neumann, B. H. & Neumann, Hanna 1949 Embedding theorems for groups. J. Lond.
Math. Soc. 24, 247-254.

Kurosch =Kuro§, A. G. 1934 Die Untergruppen der freien Produkte von beliebigen Gruppen.
Math. Ann. 109, 647-660.

Kuro§, A. G. 1939 Lokal freie Gruppen. C.R. (Doklady) Acad. Sci. U.R.S.S. (N.S.), 24, 99-101.

Kuro§, A. G. 1944 Teoriya Grupp. Moscow-Leningrad: OGIZ.

Kurosch, A. G. 1953 Gruppentheorie. Berlin: Akademieverlag.

Magnus, W. 1931 Untersuchungen iiber einige unendliche diskontinuierliche Gruppen. Math. Ann.
105, 52-74.

Magnus, W. 1932 Das Identitatsproblem fiir Gruppen mit einer definierenden Relation. Math.
Ann. 106, 295-307.

Mal’cev, A. I. 1948 On groups of finite rank. Rec. Math., Moscou (Mat. Sbornik), N.S., 22 (64),
351-352 (Russian).

Neumann, B. H. 1937 Some remarks on infinite groups. J. Lond. Math. Soc. 12, 120-127.

Neumann, B. H. 19434 Adjunction of elements to groups. J. Lond. Math. Soc. 18, 4-11.

Neumann, B. H. 194356 On the number of generators of a free product. J. Lond. Math. Soc. 18,
12-20.

Neumann, B. H. 1950 A two-generator group isomorphic to a proper factor group. J. Lond. Math.
Soc. 25, 247-248.

Neumann, B. H. 1953 On a problem of Hopf. J. Lond. Math. Soc. 28, 351-353.

Neumann, B. H. & Neumann, Hanna 1950 A remark on generalized free products. J. Lond. Math.
Soc. 25, 202-204.

Neumann, B. H. & Neumann, Hanna 1953 A contribution to the embedding theory of group
amalgams. Proc. Lond. Math. Soc. (3) 3, 245-256.

Neumann, Hanna 1948 Generalized free products with amalgamated subgroups. 1. Amer. J. Math.
70, 590-625.

Neumann, Hanna 1949 Generalized free products with amalgamated subgroups. II. Amer. J. Math.
71, 491-540.

Neumann, Hanna 1950 Generalized free sums of cyclical groups. Amer. J. Math. 72, 671-685.

Neumann, Hanna 1951 On an amalgam of Abelian groups. J. Lond. Math. Soc. 26, 228-232.

Schreier, O. 1927 Die Untergruppen der freien Gruppen. Abk. math. Sem. Hamburg, 5, 161-183.

Specker, E. 1950 Additive Gruppen von Folgen ganzer Zahlen. Portug. Math. 9, 131-140,

Takahasi, Mutuo 1950 Note on locally free groups. J. Inst. Polyt., Osaka, A, 1, 65-70.

Waerden, B. L. van der 1948 Free products of groups. Amer. J. Math. 70, 527-528.

List of papers not referred to

Artin, E. 1947 The free product of groups. Amer. J. Math. 69, 1-4.

Baer, R. 19504 Free sums of groups and their generalizations. II. Amer. J. Math. 72, 625-646.

Baer, R. 195046 Free sums of groups and their generalizations. III. Amer. J. Math. 72, 647-670.

Gortinskii, Yu. N. 1952 Groups with a finite number of classes of conjugates. Rec. Math., Moscou
(Mat. Sbornik), 31 (73), 167-182 (Russian).

Higman, G. 1953 On a problem of Takahasi. J. Lond. Math. Soc. 28, 250-252,

Kalaschnikov, V. A. & Kurosch, A. G. 1935 Freie Produkte der Gruppen mit vereinigten Unter-
gruppen der Zentren. C.R. (Doklady) Acad. Sci. U.R.S.S. 1, 285-286 (Russian and German).

Kuhn, H. W. 1952 Subgroup theorems for groups presented by generators and relations. Ann.
Math. 56, 22—46.


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

a
\

A

/—%

SOCIETY

)
A

A

OF

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

Downloaded from rsta.royalsocietypublishing.org

554 B. H. NEUMANN

Magnus, W. 1930 Uber diskontinuierliche Gruppen mit einer definierenden Relation (Der Frei-
heitssatz). J. reine angew. Math. 163, 141-165.

Magnus, W. 1939 Allgemeine Gruppentheorie. Enzyklopidie math. Wiss. 1, 2. Aufl. Heft 4, 1.
Leipzig: Teubner.

Neumann, B. H. 1952 A note on algebraically closed groups. J. Lond. Math. Soc. 27, 247-249.

Neumann, B. H. & Neumann, Hanna 1952 Extending partial endomorphisms of groups. Proc.
Lond. Math. Soc. (3) 2, 337-348.

Reidemeister, K. 1932 Einfiihrung in die kombinatorische Topologie. Braunschweig: Vieweg.

Scott, W. R. 1951 Algebraically closed groups. Proc. Amer. Math. Soc. 2, 118-121.

Takahasi, Mutuo 19514 Primitive locally free groups. J. Inst. Polyt., Osaka, A, 2, 1-11,

Takahasi, Mutuo 19516 Note on word-subgroups in free products of groups. J. Inst. Polyt., Osaka,
A, 2, 13-18.

Takahasi, Mutuo 19516 Note on chain conditions in free groups. Osaka Math. J. 3, 221-225.


http://rsta.royalsocietypublishing.org/

